429 research outputs found

    Improving Accuracy in Ultra-Wideband Indoor Position Tracking through Noise Modeling and Augmentation

    Get PDF
    The goal of this research is to improve the precision in tracking of an ultra-wideband (UWB) based Local Positioning System (LPS). This work is motivated by the approach taken to improve the accuracies in the Global Positioning System (GPS), through noise modeling and augmentation. Since UWB indoor position tracking is accomplished using methods similar to that of the GPS, the same two general approaches can be used to improve accuracy. Trilateration calculations are affected by errors in distance measurements from the set of fixed points to the object of interest. When these errors are systemic, each distinct set of fixed points can be said to exhibit a unique set noise. For UWB indoor position tracking, the set of fixed points is a set of sensors measuring the distance to a tracked tag. In this work we develop a noise model for this sensor set noise, along with a particle filter that uses our set noise model. To the author\u27s knowledge, this noise has not been identified and modeled for an LPS. We test our methods on a commercially available UWB system in a real world setting. From the results we observe approximately 15% improvement in accuracy over raw UWB measurements. The UWB system is an example of an aided sensor since it requires a person to carry a device which continuously broadcasts its identity to determine its location. Therefore the location of each user is uniquely known even when there are multiple users present. However, it suffers from limited precision as compared to some unaided sensors such as a camera which typically are placed line of sight (LOS). An unaided system does not require active participation from people. Therefore it has more difficulty in uniquely identifying the location of each person when there are a large number of people present in the tracking area. Therefore we develop a generalized fusion framework to combine measurements from aided and unaided systems to improve the tracking precision of the aided system and solve data association issues in the unaided system. The framework uses a Kalman filter to fuse measurements from multiple sensors. We test our approach on two unaided sensor systems: Light Detection And Ranging (LADAR) and a camera system. Our study investigates the impact of increasing the number of people in an indoor environment on the accuracies using a proposed fusion framework. From the results we observed that depending on the type of unaided sensor system used for augmentation, the improvement in precision ranged from 6-25% for up to 3 people

    Communication-based UAV Swarm Missions

    Get PDF
    Unmanned aerial vehicles have developed rapidly in recent years due to technological advances. UAV technology can be applied to a wide range of applications in surveillance, rescue, agriculture and transport. The problems that can exist in these areas can be mitigated by combining clusters of drones with several technologies. For example, when a swarm of drones is under attack, it may not be able to obtain the position feedback provided by the Global Positioning System (GPS). This poses a new challenge for the UAV swarm to fulfill a specific mission. This thesis intends to use as few sensors as possible on the UAVs and to design the smallest possible information transfer between the UAVs to maintain the shape of the UAV formation in flight and to follow a predetermined trajectory. This thesis presents Extended Kalman Filter methods to navigate autonomously in a GPS-denied environment. The UAV formation control and distributed communication methods are also discussed and given in detail

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    NON-CONTACT TECHNIQUES FOR HUMAN VITAL SIGN DETECTION AND GAIT ANALYSIS

    Get PDF
    Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal motion of human limb joints can help to accurately monitor human subjects or patients over time to provide early flags of possible complications in order to aid in a proper diagnosis and development of future comprehensive treatment plans. With the spread of COVID-19 around the world, it has been getting more important than ever to employ technology that enables us to detect human vital signs in a non-contact way and helps protect both patients and healthcare providers from potentially life-threatening viruses, and have the potential to also provide a convenient way to monitor people health condition, remotely. A popular technique to extract biological parameters from a distance is to use cameras. Radar systems are another attractive solution for non-contact human vital signs monitoring and gait investigation that track and monitor these biological parameters without invading people privacy. The goal of this research is to develop non-contact methods that is capable of extracting human vital sign parameters and gait features accurately. To do that, in this work, optical systems including cameras and proper filters have been developed to extract human respiratory rate, heart rate, and oxygen saturation. Feasibility of blood pressure extraction using the developed optical technique has been investigated, too. Moreover, a wideband and low-cost radar system has been implemented to detect single or multiple human subject’s respiration and heart rate in dark or from behind the wall. The performance of the implemented radar system has been enhanced and it has been utilized for non-contact human gait analysis. Along with the hardware, advanced signal processing schemes have been enhanced and applied to the data collected using the aforementioned radar system. The data processing algorithms have been extended for multi-subject scenarios with high accuracy for both human vital sign detection and gait analysis. In addition, different configurations of this and high-performance radar system including mono-static and MIMO have been designed and implemented with great success. Many sets of exhaustive experiments have been conducted using different human subjects and various situations and accurate reference sensors have been used to validate the performance of the developed systems and algorithms

    Towards localisation with Doppler radar

    Full text link
    In this thesis the author introduces a novel method for Geo Localisation via Doppler Radar. The area of research is in the three dimensional space using amplitude and magnitude measurements. Geo Localisation in mobile applications is a useful technology that enables monitoring and gathering information about objects of interest

    Realization Limits of Impulse-Radio UWB Indoor Localization Systems

    Get PDF
    In this work, the realization limits of an impulse-based Ultra-Wideband (UWB) localization system for indoor applications have been thoroughly investigated and verified by measurements. The analysis spans from the position calculation algorithms, through hardware realization and modeling, up to the localization experiments conducted in realistic scenarios. The main focus was put on identification and characterization of limiting factors as well as developing methods to overcome them

    Passive localization through light flicker fingerprinting

    Get PDF
    In this paper, we show that the flicker waveforms of various CFL and LED lamp models exhibit distinctive waveform patterns due to harmonic distortions of rectifiers and voltage regulators, the key components of modern lamp drivers. We then propose a passive localization technique based on fingerprinting these distortions that occur naturally in indoor environments and thus requires no infrastructure or additional equipment. The novel technique uses principal component analysis (PCA) to extract the most important signal features from the flicker frequency spectra followed by kNN clustering and neural net- work classifiers to identify a light source based on its flicker signature. The evaluation on 39 flicker patterns collected from 8 residential locations demonstrates that the technique can identify a location within a house with up to 90% accuracy and identify an individual house from a set of houses with an average accuracy of 86.3%

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains
    • …
    corecore