1,052 research outputs found

    Performance Modelling and Network Monitoring for Internet of Things (IoT) Connectivity

    Get PDF

    SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation

    Get PDF
    In this paper, we present SDR-LoRa, an open-source, full-fledged Software Defined Radio (SDR) implementation of a LoRa transceiver. First, we conduct a thorough analysis of the LoRa physical layer (PHY) functionalities, encompassing processes such as packet modulation, demodulation, and preamble detection. Then, we leverage on this analysis to create a pioneering SDR-based LoRa PHY implementation. Accordingly, we thoroughly describe all the implementation details. Moreover, we illustrate how SDR-LoRa can help boost research on the LoRa protocol by presenting three exemplary key applications that can be built on top of our implementation, namely fine-grained localization, interference cancellation, and enhanced link reliability. To validate SDR-LoRa and its applications, we test it on two different platforms: (i) a physical setup involving USRP radios and off-the-shelf commercial devices, and (ii) the Colosseum wireless channel emulator. Our experimental findings reveal that (i) SDR-LoRa performs comparably to conventional commercial LoRa systems, and (ii) all the aforementioned applications can be successfully implemented on top of SDR-LoRa with remarkable results. The complete details of the SDR-LoRa implementation code have been publicly shared online, together with a plug-and-play Colosseum container

    Honeypot for wireless IoT networks

    Get PDF
    Ciele tejto práce ležia v teoretickej analýze konceptu Internet vecí (IoT) a jeho bezpečnostných problémov, praktickom výskume a vývoji nového unikát-neho zariadenia zvaného "IoT honeypot". Analytická časť práce sumarizuje existujúce hardvérové a softvérové riešenia, a sústredí sa na technológiu Soft-vérom definovaného rádia (SDR), ktorá bola použitá na vývoj IoT honeypot-u. Vyvíjaný prototyp v súčasnosti podporuje rozšírený Z-Wave protokol. Avšak, dizajn je dosť univerzálny na to, aby v budúcnosti podporoval ďalšie IoT protokoly. Motiváciou tejto práce bolo vytvoriť zariadenie, ktoré dokáže zbierať informácie o IoT komunikácii, detegovať potenciálnych útočníkov, a pôsobiť ako návnada, ktorá komplikuje útočníkom objaviť a prebrať kon-trolu nad skutočnými nasadenými IoT zariadeniami, ako sú senzory, spínače, a podobne. Výstupom tejto práce je funkčný IoT honeypot, ktorý podporuje viacero režimov fungovania (napríklad pasívny alebo interaktívny režim), a môže byť nasadený ako súčasť Z-Wave infraštruktúry. Predstavuje komple-ment k ostatným bezpečnostným nástrojom a mechanizmom, ktoré zvyšujú úroveň bezpečnosti IoT infraštruktúry.The goals of this thesis lay among theoretical analysis of the Internet of Things (IoT) concept and its security issues, and practical research and development of a new unique device called "IoT honeypot." The analytical part of the thesis summarizes existing hardware and software solutions and concentrates on Software Defined Radio (SDR) technology, which was used for the development of IoT honeypot. The developed prototype currently supports a wide-spread Z-Wave protocol. However, the design is universal enough to support other IoT protocols in the future. The motivation of this thesis was to create a device that can collect information about IoT traffic, detect potential attackers, and act as a decoy that complicates attackers to discover and hack real deployed IoT devices, such as sensors, switches, and so on. The result of the thesis is a working IoT honeypot that supports multiple modes of operation (such as passive or interactive mode), and that can be deployed as a part of a Z-Wave infrastructure. It is as a complement to other security tools and mechanisms that increase the security of IoT infrastructure

    A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances

    Get PDF
    Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications

    Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios

    Get PDF
    The purpose of this project is to create a software defined radio based transmitter that can mimic the signals of the Tire Pressure Monitoring System (TPMS) sensors. The team used an amplifying receiver to read signals as well as decode data. The transmitter was built using a software defined radio running MATLAB code. The team conducted a series of tests to verify the functionality of the pseudo transmitter using both computer simulation and over-the-air and with a real vehicle. The results of the tests verified that the pseudo transmitter can communicate properly with the receiver of the previous project as well as a real TPMS receiver in a vehicle. The results of this project are useful in identifying breaches in the TPMS security and offering data for developing a more secure TPMS

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    corecore