41 research outputs found

    Moving usable security research out of the lab: evaluating the use of VR studies for real-world authentication research

    Get PDF
    Empirical evaluations of real-world research artefacts that derive results from observations and experiments are a core aspect of usable security research. Expert interviews as part of this thesis revealed that the costs associated with developing and maintaining physical research artefacts often amplify human-centred usability and security research challenges. On top of that, ethical and legal barriers often make usability and security research in the field infeasible. Researchers have begun simulating real-life conditions in the lab to contribute to ecological validity. However, studies of this type are still restricted to what can be replicated in physical laboratory settings. Furthermore, historically, user study subjects were mainly recruited from local areas only when evaluating hardware prototypes. The human-centred research communities have recognised and partially addressed these challenges using online studies such as surveys that allow for the recruitment of large and diverse samples as well as learning about user behaviour. However, human-centred security research involving hardware prototypes is often concerned with human factors and their impact on the prototypes’ usability and security, which cannot be studied using traditional online surveys. To work towards addressing the current challenges and facilitating research in this space, this thesis explores if – and how – virtual reality (VR) studies can be used for real-world usability and security research. It first validates the feasibility and then demonstrates the use of VR studies for human-centred usability and security research through six empirical studies, including remote and lab VR studies as well as video prototypes as part of online surveys. It was found that VR-based usability and security evaluations of authentication prototypes, where users provide touch, mid-air, and eye-gaze input, greatly match the findings from the original real-world evaluations. This thesis further investigated the effectiveness of VR studies by exploring three core topics in the authentication domain: First, the challenges around in-the-wild shoulder surfing studies were addressed. Two novel VR shoulder surfing methods were implemented to contribute towards realistic shoulder surfing research and explore the use of VR studies for security evaluations. This was found to allow researchers to provide a bridge over the methodological gap between lab and field studies. Second, the ethical and legal barriers when conducting in situ usability research on authentication systems were addressed. It was found that VR studies can represent plausible authentication environments and that a prototype’s in situ usability evaluation results deviate from traditional lab evaluations. Finally, this thesis contributes a novel evaluation method to remotely study interactive VR replicas of real-world prototypes, allowing researchers to move experiments that involve hardware prototypes out of physical laboratories and potentially increase a sample’s diversity and size. The thesis concludes by discussing the implications of using VR studies for prototype usability and security evaluations. It lays the foundation for establishing VR studies as a powerful, well-evaluated research method and unfolds its methodological advantages and disadvantages

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida

    The Proceedings of the 23rd Annual International Conference on Digital Government Research (DGO2022) Intelligent Technologies, Governments and Citizens June 15-17, 2022

    Get PDF
    The 23rd Annual International Conference on Digital Government Research theme is “Intelligent Technologies, Governments and Citizens”. Data and computational algorithms make systems smarter, but should result in smarter government and citizens. Intelligence and smartness affect all kinds of public values - such as fairness, inclusion, equity, transparency, privacy, security, trust, etc., and is not well-understood. These technologies provide immense opportunities and should be used in the light of public values. Society and technology co-evolve and we are looking for new ways to balance between them. Specifically, the conference aims to advance research and practice in this field. The keynotes, presentations, posters and workshops show that the conference theme is very well-chosen and more actual than ever. The challenges posed by new technology have underscored the need to grasp the potential. Digital government brings into focus the realization of public values to improve our society at all levels of government. The conference again shows the importance of the digital government society, which brings together scholars in this field. Dg.o 2022 is fully online and enables to connect to scholars and practitioners around the globe and facilitate global conversations and exchanges via the use of digital technologies. This conference is primarily a live conference for full engagement, keynotes, presentations of research papers, workshops, panels and posters and provides engaging exchange throughout the entire duration of the conference

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Law and Policy for the Quantum Age

    Get PDF
    Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies

    LegitimID: A federative digital identity system for strong authentication

    Get PDF
    The growing use of online services advocated the emergence of digital identity as a mechanism of data security and personal information protection that can increase the trust among online users and applications. This paper introduces a new security system developed around the digital identity concept, implemented using a federative multifactor strong authentication framework and tested in an authentic online educational setting to accomplish the complete life cycle of business privacy. System performance evaluated on a sample of 108 students revealed an excellent acceptance and confidence among the users

    Modelling escalation of attacks in federated identity management

    Get PDF
    PhD ThesisFederated Identity Management (FIM) is an increasingly prevalent method for authenticating users online. FIM offloads the authentication burden from a Service Provider (SP) to an Identity Provider (IdP) that the SP trusts. The different entities involved in the FIM process are referred to as stakeholders. The benefits of FIM to stakeholders are clear, such as the ability for users to use Single Sign-On. However, the security of FIM also has to be evaluated. Attacks on one point in a FIM system can lead to other attacks being possible, and detecting those attacks can be hard just from modelling the functionality of the FIM system. Attacks in which the effect of one attack can become the cause for another attack are referred to in this thesis as escalating attacks. The overall research question this thesis revolves around: how can we model escalating attacks to detect attacks which are possible through an adversary first launching another attack, and present causality of attacks to the FIM stakeholders involved? This thesis performs a survey of existing attacks in FIM. We categorise attacks on FIM using a taxonomy of our own design. This survey is the first attempt at categorising attacks that target FIM using a taxonomy. Some attacks can have an effect that causes another attack to be possible in ways that are difficult to predict. We consider a case study involving OAuth 2.0 (provided by existing literature), as a basis for modelling attack escalation. We then seek to present a language for modelling FIM systems and attacker manipulations on those systems. We find that FIM systems can be generalised for the purpose of a programmatic logical analysis. In addition, attacker manipulations on a system can be broken down using an existing conceptual framework called Malicious and Accidental Fault Tolerance (MAFTIA). Using a generalised FIM system model and MAFTIA, we can express a complex interlinking of attacks informed by case studies in FIM security analysis. This is the first attempt to model FIM systems generally and apply logical analysis to that model. Finally, we show how causality of attacks can be analysed using attack trees. We find that any solutions to an escalating attack can be expressed using a tree model which conforms to existing research on attack trees. Our approach is the first attempt of modelling attacks on FIM systems through the use of attack trees. We consider stakeholder attribution and cost analysis as concrete methods for analysing attack trees

    Actas de las VI Jornadas Nacionales (JNIC2021 LIVE)

    Get PDF
    Estas jornadas se han convertido en un foro de encuentro de los actores más relevantes en el ámbito de la ciberseguridad en España. En ellas, no sólo se presentan algunos de los trabajos científicos punteros en las diversas áreas de ciberseguridad, sino que se presta especial atención a la formación e innovación educativa en materia de ciberseguridad, y también a la conexión con la industria, a través de propuestas de transferencia de tecnología. Tanto es así que, este año se presentan en el Programa de Transferencia algunas modificaciones sobre su funcionamiento y desarrollo que han sido diseñadas con la intención de mejorarlo y hacerlo más valioso para toda la comunidad investigadora en ciberseguridad
    corecore