111 research outputs found

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Large Language Models Encode Clinical Knowledge

    Full text link
    Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications

    The Nature and Implementation of Representation in Biological Systems

    Get PDF
    I defend a theory of mental representation that satisfies naturalistic constraints. Briefly, we begin by distinguishing (i) what makes something a representation from (ii) given that a thing is a representation, what determines what it represents. Representations are states of biological organisms, so we should expect a unified theoretical framework for explaining both what it is to be a representation as well as what it is to be a heart or a kidney. I follow Millikan in explaining (i) in terms of teleofunction, explicated in terms of natural selection. To explain (ii), we begin by recognizing that representational states do not have content, that is, they are neither true nor false except insofar as they both “point to” or “refer” to something, as well as “say” something regarding whatever it is they are about. To distinguish veridical from false representations, there must be a way for these separate aspects to come apart; hence, we explain (ii) by providing independent theories of what I call f-reference and f-predication (the ‘f’ simply connotes ‘fundamental’, to distinguish these things from their natural language counterparts). Causal theories of representation typically founder on error, or on what Fodor has called the disjunction problem. Resemblance or isomorphism theories typically founder on what I’ve called the non-uniqueness problem, which is that isomorphisms and resemblance are practically unconstrained and so representational content cannot be uniquely determined. These traditional problems provide the motivation for my theory, the structural preservation theory, as follows. F-reference, like reference, is a specific, asymmetric relation, as is causation. F-predication, like predication, is a non-specific relation, as predicates typically apply to many things, just as many relational systems can be isomorphic to any given relational system. Putting these observations together, a promising strategy is to explain f-reference via causal history and f-predication via something like isomorphism between relational systems. This dissertation should be conceptualized as having three parts. After motivating and characterizing the problem in chapter 1, the first part is the negative project, where I review and critique Dretske’s, Fodor’s, and Millikan’s theories in chapters 2-4. Second, I construct my theory about the nature of representation in chapter 5 and defend it from objections in chapter 6. In chapters 7-8, which constitute the third and final part, I address the question of how representation is implemented in biological systems. In chapter 7 I argue that single-cell intracortical recordings taken from awake Macaque monkeys performing a cognitive task provide empirical evidence for structural preservation theory, and in chapter 8 I use the empirical results to illustrate, clarify, and refine the theory

    Metalogic and the psychology of reasoning.

    Get PDF
    The central topic of the thesis is the relationship between logic and the cognitive psychology of reasoning. This topic is treated in large part through a detailed examination of the recent work of P. N. Johnson-Laird, who has elaborated a widely-read and influential theory in the field. The thesis is divided into two parts, of which the first is a more general and philosophical coverage of some of the most central issues to be faced in relating psychology to logic, while the second draws upon this as introductory material for a critique of Johnson-Laird's `Mental Model' theory, particularly as it applies to syllogistic reasoning. An approach similar to Johnson-Laird's is taken to cognitive psychology, which centrally involves the notion of computation. On this view, a cognitive model presupposes an algorithm which can be seen as specifying the behaviour of a system in ideal conditions. Such behaviour is closely related to the notion of `competence' in reasoning, and this in turn is often described in terms of logic. Insofar as a logic is taken to specify the competence of reasoners in some domain, it forms a set of conditions on the 'input-output' behaviour of the system, to be accounted for by the algorithm. Cognitive models, however, must also be subjected to empirical test, and indeed are commonly built in a highly empirical manner. A strain can therefore develop between the empirical and the logical pressures on a theory of reasoning. Cognitive theories thus become entangled in a web of recently much-discussed issues concerning the rationality of human reasoners and the justification of a logic as a normative system. There has been an increased interest in the view that logic is subject to revision and development, in which there is a recognised place for the influence of psychological investigation. It is held, in this thesis, that logic and psychology are revealed by these considerations to be interdetermining in interesting ways, under the general a priori requirement that people are in an important and particular sense rational. Johnson-Laird's theory is a paradigm case of the sort of cognitive theory dealt with here. It is especially significant in view of the strong claims he makes about its relation to logic, and the role the latter plays in its justification and in its interpretation. The theory is claimed to be revealing about fundamental issues in semantics, and the nature of rationality. These claims are examined in detail, and several crucial ones refuted. Johnson- Laird's models are found to be wanting in the level of empirical support provided, and in their ability to found the considerable structure of explanation they are required to bear. They fail, most importantly, to be distinguishable from certain other kinds of models, at a level of theory where the putative differences are critical. The conclusion to be drawn is that the difficulties in this field are not yet properly appreciated. Psychological explantion requires a complexity which is hard to reconcile with the clarity and simplicity required for logical insights

    A Machine Learning Approach for Optimizing Heuristic Decision-making in OWL Reasoners

    Get PDF
    Description Logics (DLs) are formalisms for representing knowledge bases of application domains. TheWeb Ontology Language (OWL) is a syntactic variant of a very expressive description logic. OWL reasoners can infer implied information from OWL ontologies. The performance of OWL reasoners can be severely affected by situations that require decision-making over many alternatives. Such a non-deterministic behavior is often controlled by heuristics that are based on insufficient information. This thesis proposes a novel OWL reasoning approach that applies machine learning (ML) to implement pragmatic and optimal decision-making strategies in such situations. Disjunctions occurring in ontologies are one source of non deterministic actions in reasoners. We propose two ML-based approaches to reduce the non-determinism caused by dealing with disjunctions. The first approach is restricted to propositional description logic while the second one can deal with standard description logic. The first approach builds a logistic regression classifier that chooses a proper branching heuristic for an input ontology. Branching heuristics are first developed to help Propositional Satisfiability (SAT) based solvers with making decisions about which branch to pick in each branching level. The second approach is the developed version of the first approach. An SVM (Support Vector Machine) classier is designed to select an appropriate expansion-ordering heuristic for an input ontology. The built-in heuristics are designed for expansion ordering of satisfiability testing in OWL reasoners. They determine the order for branches in search trees. Both of the above approaches speed up our ML-based reasoner by up to two orders of magnitude in comparison to the non-ML reasoner. Another source of non-deterministic actions is the order in which tableau rules should be applied. On average, our ML-based approach that is an SVM classifier achieves a speedup of two orders of magnitude when compared to the most expensive rule ordering of the non-ML reasoner

    Knowledge based approach to process engineering design

    Get PDF

    Identifying Useful Inference Paths in Large Commonsense Knowledge Bases by Retrograde Analysis

    No full text
    Commonsense reasoning at scale is a critical problem for modern cognitive systems. Large theories have millions of axioms, but only a handful are relevant for answering a given goal query. Irrelevant axioms increase the search space, overwhelming unoptimized inference engines in large theories. Therefore, methods that help in identifying useful inference paths are an essential part of large cognitive systems. In this paper, we use retrograde analysis to build a database of proof paths that lead to at least one successful proof. This database helps the inference engine identify more productive parts of the search space. A heuristic based on this approach is used to order nodes during a search. We study the efficacy of this approach on hundreds of queries from the Cyc KB. Empirical results show that this approach leads to significant reduction in inference time

    Metalogic and the psychology of reasoning

    Get PDF
    The central topic of the thesis is the relationship between logic and the cognitive psychology of reasoning. This topic is treated in large part through a detailed examination of the recent work of P. N. Johnson-Laird, who has elaborated a widely-read and influential theory in the field. The thesis is divided into two parts, of which the first is a more general and philosophical coverage of some of the most central issues to be faced in relating psychology to logic, while the second draws upon this as introductory material for a critique of Johnson-Laird's `Mental Model' theory, particularly as it applies to syllogistic reasoning. An approach similar to Johnson-Laird's is taken to cognitive psychology, which centrally involves the notion of computation. On this view, a cognitive model presupposes an algorithm which can be seen as specifying the behaviour of a system in ideal conditions. Such behaviour is closely related to the notion of `competence' in reasoning, and this in turn is often described in terms of logic. Insofar as a logic is taken to specify the competence of reasoners in some domain, it forms a set of conditions on the 'input-output' behaviour of the system, to be accounted for by the algorithm. Cognitive models, however, must also be subjected to empirical test, and indeed are commonly built in a highly empirical manner. A strain can therefore develop between the empirical and the logical pressures on a theory of reasoning. Cognitive theories thus become entangled in a web of recently much-discussed issues concerning the rationality of human reasoners and the justification of a logic as a normative system. There has been an increased interest in the view that logic is subject to revision and development, in which there is a recognised place for the influence of psychological investigation. It is held, in this thesis, that logic and psychology are revealed by these considerations to be interdetermining in interesting ways, under the general a priori requirement that people are in an important and particular sense rational. Johnson-Laird's theory is a paradigm case of the sort of cognitive theory dealt with here. It is especially significant in view of the strong claims he makes about its relation to logic, and the role the latter plays in its justification and in its interpretation. The theory is claimed to be revealing about fundamental issues in semantics, and the nature of rationality. These claims are examined in detail, and several crucial ones refuted. Johnson- Laird's models are found to be wanting in the level of empirical support provided, and in their ability to found the considerable structure of explanation they are required to bear. They fail, most importantly, to be distinguishable from certain other kinds of models, at a level of theory where the putative differences are critical. The conclusion to be drawn is that the difficulties in this field are not yet properly appreciated. Psychological explantion requires a complexity which is hard to reconcile with the clarity and simplicity required for logical insights

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    Get PDF
    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications
    • 

    corecore