5,538 research outputs found

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Uncovering human transcription factor interactions associated with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays

    Get PDF
    Identifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been difficult due to technical and computational challenges. Indeed, current experimental methods such as chromatin immunoprecipitation are capable of only testing one TF at a time and motif prediction algorithms often lead to false positive and false negative predictions. Here, we address these limitations by developing two approaches based on enhanced yeast one-hybrid assays. The first approach allows to interrogate the binding of >1,000 human TFs to single nucleotide variant alleles, short insertions and deletions (indels), and novel DNA motifs; while the second approach allows for the identification of TFs that bind to repetitive DNA elements. Using the former approach, we identified gain of TF interactions to a GG→AA mutation in the TERT promoter and an 18 bp indel in the TAL1 super-enhancer, both of which are associated with cancer, and identified the TFs that bind to three uncharacterized DNA motifs identified by the ENCODE Project in footprinting assays. Using the latter approach, we detected the binding of 75 TFs to the highly repetitive Alu elements. We anticipate that these approaches will expand our capabilities to study genetic variation and under-characterized genomic regions.https://doi.org/10.1101/459305First author draf

    The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation

    Get PDF
    Deciphering regulatory events that drive malignant transformation represents a major challenge for systems biology. Here we analyzed genome-wide transcription profiling of an in-vitro transformation process. We focused on a cluster of genes whose expression levels increased as a function of p53 and p16INK4A tumor suppressors inactivation. This cluster predominantly consists of cell cycle genes and constitutes a signature of a diversity of cancers. By linking expression profiles of the genes in the cluster with the dynamic behavior of p53 and p16INK4A, we identified a promoter architecture that integrates signals from the two tumor suppressive channels and that maps their activity onto distinct levels of expression of the cell cycle genes, which in turn, correspond to different cellular proliferation rates. Taking components of the mitotic spindle as an example, we experimentally verified our predictions that p53-mediated transcriptional repression of several of these novel targets is dependent on the activities of p21, NFY and E2F. Our study demonstrates how a well-controlled transformation process allows linking between gene expression, promoter architecture and activity of upstream signaling molecules.Comment: To appear in Molecular Systems Biolog

    ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes

    Get PDF
    ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Biochemically validated analysis in human T-cells reveals that three transcription factor oncogenes, NOTCH1, MYC, and HES1, bind one order of magnitude more promoters than previously thought. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the resolution of a more complete map of transcriptional targets reveals that MYC binds nearly all promoters bound by NOTCH1. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs
    corecore