9,504 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Annotated Bibliography: Anticipation

    Get PDF

    The Role of Optic Flow and Gaze Direction on Postural Control

    Get PDF
    Objective: The observers use the optic flow to control self-motion. However, the current state of knowledge indicates that it is difficult to understand how optic flow is used by the visual system without a direct measurement of the changes in the flow patterns caused by eye movements during natural behaviour. The purpose of this literature review is to highlight the importance of the integration between optic flow and eye movements for postural control. Methods: A literature review of the electronic papers through July 2022 was independently performed by three investigators. The selection of the studies was made by a search on PubMed, Scopus, and Google Scholar with two groups of selected keywords. We excluded papers performed on subjects with pathologies, children, and the elderly. Results: The results of this literature analysis highlight that eye movements are required to drive visual motion processing and heading perception in both static and dynamic contexts. Conclusion: Although we now know many neural mechanisms that process heading direction from the optic flow field, a consideration of optic flow patterns relative to gaze direction provides more detailed information on how the retinal flow field is used to control body balance. Doi: 10.28991/ESJ-2022-06-06-020 Full Text: PD

    Multimodal neuroimaging of vestibular and postural networks: Investigating the pathophysiology of idiopathic dizziness in older adults

    Get PDF
    Successful ageing - the preservation of good performance into old age, is an aspiration for many and a challenge for society. Modifiable factors which account for ageing-related functional decline should thus be identified and reduced. As life expectancy increases, brain ageing and its functional consequences become an increasingly important target for research and intervention. Cerebral small vessel disease, largely driven by vascular risk factors, has emerged as a strong contributor to cognitive and balance decline in late life. Though the early effects of cerebral small vessel disease on cognition are increasingly better understood, its symptomatic effects on other functional systems are not well characterised. In this thesis, I investigated the long recognised, but pathophysiologically enigmatic syndrome of dizziness in older adults, not accounted for by neurological disease or vestibular dysfunction. I considered the hypothesis that this ‘idiopathic dizziness’ is secondary to cerebral small vessel disease through its deleterious effects on white matter networks which subserve vestibular perceptual processes and/or the control of balance. I first defined the functional anatomy of the core human vestibular cortex by its functional connectivity (Chapter 3). I related the resulting anatomical subregions to behavioural and task neuroimaging data to define a vestibular network involved in self-motion perception. I proceeded to characterise the syndrome of idiopathic dizziness using clinical, cognitive and behavioural (vestibular function, balance and gait) data from patients and controls (Chapter 4). I combined this data with structural and diffusion magnetic resonance imaging data to investigate the pathophysiology of idiopathic dizziness. I found that frontal white matter tracts relevant to the control of balance had lower integrity in patients with idiopathic dizziness than controls. These findings occurred in the context of excess vascular risk, and markers of cerebral small vessel disease. Additionally, I found vestibular function and perception were normal in patients with idiopathic dizziness. The results suggest disrupted balance control may underpin idiopathic dizziness in cerebral small vessel disease. I proceeded to investigate whether neural correlates of balance control were altered in idiopathic dizziness as a model for mild balance impairment in cerebral small vessel disease (Chapter 5). To do this, I applied electroencephalography during quiet standing and related brain activity to spontaneous sway. I showed idiopathic dizziness was linked to altered cortical activity in relation to balance control, and this cortical activity was influenced by the burden of cerebral small vessel disease. Additionally, patients with idiopathic dizziness uniquely engaged a low frequency postural connectivity network, consistent with a different mode of postural control. Overall, the results within this thesis show a relationship between idiopathic dizziness and vascular injury to frontal tracts involved in the control of balance in cerebral small vessel disease. Small vessel disease may disrupt the cortical control of balance as a basis for symptoms in this syndrome.Open Acces

    The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control

    Get PDF
    Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment. Tools are urgently needed that address a number of unmet needs in neurological practice. Namely, these include timely and accurate diagnosis; disease stratification; risk prediction; tracking disease progression; and decision making for intervention optimisation and maximising therapeutic response (such as medication selection, disease staging, and targeted support). Using some recent examples of research across a range of relevant neurological conditions—including Parkinson’s disease, ataxia, and dementia— we will illustrate evidence that supports progress against these unmet clinical needs. We summarise the novel ‘big data’ approaches that utilise data mining and machine learning techniques to improve disease classification and risk prediction, and conclude with recommendations for future direction

    Non-Invasive Investigation of Human Foot Muscles Function

    Get PDF
    Appropriate functioning of the human foot is fundamental for good quality of life. The intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural behaviour and contribution to good foot health is currently poorly understood. Recording muscle activation from IFM has been attempted with invasive techniques, but these generally only allow assessment of one muscle at a time and are not much used in many clinical populations (e.g. children, patients with peripheral neuropathy or on blood thinning medication). Here a novel application of multi-channel surface electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and quantify activation patterns of IFMs from across the plantar region of the foot. sEMG (13×5 array), kinematics and force plate data were recorded from 30 healthy adult volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) methodologies were used to evaluate the physiological features of the sEMG, the patterns of activation, the association with whole body and foot biomechanics and the neuromuscular drive to the IFM. EMG signals features (amplitude and frequency) were shown to be in the physiological ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs responded differently based on the direction of postural sway, with greater activations associated with sways in the mediolateral direction. Entropy based, non-linear analysis revealed that neuromuscular drive to IFM depends on the balance demand of the postural task, with greater drive evident for more challenging tasks (i.e. standing on tiptoe). Combining non-invasive measures of IFM activation and entropy based assessment of temporal organisation (or structure) of EMG signal variability is therefore revealing of IFM function and will enable a more detailed assessment of IFM function across healthy and clinical populations

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    From Sensor Data to Animal Behaviour: An Oystercatcher Example

    Get PDF
    Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine
    corecore