964 research outputs found

    An Empirical Study on Android-related Vulnerabilities

    Full text link
    Mobile devices are used more and more in everyday life. They are our cameras, wallets, and keys. Basically, they embed most of our private information in our pocket. For this and other reasons, mobile devices, and in particular the software that runs on them, are considered first-class citizens in the software-vulnerabilities landscape. Several studies investigated the software-vulnerabilities phenomenon in the context of mobile apps and, more in general, mobile devices. Most of these studies focused on vulnerabilities that could affect mobile apps, while just few investigated vulnerabilities affecting the underlying platform on which mobile apps run: the Operating System (OS). Also, these studies have been run on a very limited set of vulnerabilities. In this paper we present the largest study at date investigating Android-related vulnerabilities, with a specific focus on the ones affecting the Android OS. In particular, we (i) define a detailed taxonomy of the types of Android-related vulnerability; (ii) investigate the layers and subsystems from the Android OS affected by vulnerabilities; and (iii) study the survivability of vulnerabilities (i.e., the number of days between the vulnerability introduction and its fixing). Our findings could help OS and apps developers in focusing their verification & validation activities, and researchers in building vulnerability detection tools tailored for the mobile world

    Precognition: Automated Digital Forensic Readiness System for Mobile Computing Devices in Enterprises

    Get PDF
    Enterprises are facing an unprecedented risk of security incidents due to the influx of emerging technologies, like smartphones and wearables. Most of the current Mobile security systems are not maturing in pace with technological advances. They lack the ability to learn and adapt from the past knowledge base. In the case of a security incident, enterprises find themselves underprepared for the lack of evidence and data. The systems are not designed to be forensic ready. There is a need for automated security analysis and forensically ready solution, which can learn and continuously adapt to new challenges, improve efficiency and productivity of the system. In this research, the authors have designed a security analysis and digital forensic readiness system targeted at smartphones and wearables in an enterprise environment. The proposed system detects applications violating security policies, analyzes Android and iOS applications to identify possible vulnerabilities on the server, apply machine learning algorithms to improve the efficiency and accuracy of vulnerability prediction. The System continuously learns from past incidents, proactively collect required information from the devices which can help in digital forensics. Machine learning techniques are applied to the set of features extracted from the decompiled Mobile applications and applications classified based on consisting of one or more vulnerabilities. The system was evaluated in a real-world enterprise environment with 14151 mobile applications and vulnerabilities was predicted with an accuracy of 94.2%. The system can also work on virtual instances of the mobile devices
    • …
    corecore