449 research outputs found

    Multilingual Schema Matching for Wikipedia Infoboxes

    Full text link
    Recent research has taken advantage of Wikipedia's multilingualism as a resource for cross-language information retrieval and machine translation, as well as proposed techniques for enriching its cross-language structure. The availability of documents in multiple languages also opens up new opportunities for querying structured Wikipedia content, and in particular, to enable answers that straddle different languages. As a step towards supporting such queries, in this paper, we propose a method for identifying mappings between attributes from infoboxes that come from pages in different languages. Our approach finds mappings in a completely automated fashion. Because it does not require training data, it is scalable: not only can it be used to find mappings between many language pairs, but it is also effective for languages that are under-represented and lack sufficient training samples. Another important benefit of our approach is that it does not depend on syntactic similarity between attribute names, and thus, it can be applied to language pairs that have distinct morphologies. We have performed an extensive experimental evaluation using a corpus consisting of pages in Portuguese, Vietnamese, and English. The results show that not only does our approach obtain high precision and recall, but it also outperforms state-of-the-art techniques. We also present a case study which demonstrates that the multilingual mappings we derive lead to substantial improvements in answer quality and coverage for structured queries over Wikipedia content.Comment: VLDB201

    Doctor of Philosophy

    Get PDF
    dissertationThe explosion of structured Web data (e.g., online databases, Wikipedia infoboxes) creates many opportunities for integrating and querying these data that go far beyond the simple search capabilities provided by search engines. Although much work has been devoted to data integration in the database community, the Web brings new challenges: the Web-scale (e.g., the large and growing volume of data) and the heterogeneity in Web data. Because there are so much data, scalable techniques that require little or no manual intervention and that are robust to noisy data are needed. In this dissertation, we propose a new and effective approach for matching Web-form interfaces and for matching multilingual Wikipedia infoboxes. As a further step toward these problems, we propose a general prudent schema-matching framework that matches a large number of schemas effectively. Our comprehensive experiments for Web-form interfaces and Wikipedia infoboxes show that it can enable on-the-fly, automatic integration of large collections of structured Web data. Another problem we address in this dissertation is schema discovery. While existing integration approaches assume that the relevant data sources and their schemas have been identified in advance, schemas are not always available for structured Web data. Approaches exist that exploit information in Wikipedia to discover the entity types and their associate schemas. However, due to inconsistencies, sparseness, and noise from the community contribution, these approaches are error prone and require substantial human intervention. Given the schema heterogeneity in Wikipedia infoboxes, we developed a new approach that uses the structured information available in infoboxes to cluster similar infoboxes and infer the schemata for entity types. Our approach is unsupervised and resilient to the unpredictable skew in the entity class distribution. Our experiments, using over one hundred thousand infoboxes extracted from Wikipedia, indicate that our approach is effective and produces accurate schemata for Wikipedia entities

    Ontology alignment based on word embedding and random forest classification.

    Get PDF
    Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component for realising the goals of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or entities) of different ontologies. However, these techniques mostly depend on string-based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embedding to discover semantic similarities between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can deal with knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of multiple similarity measures. Our experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems

    Vermeidung von Repräsentationsheterogenitäten in realweltlichen Wissensgraphen

    Get PDF
    Knowledge graphs are repositories providing factual knowledge about entities. They are a great source of knowledge to support modern AI applications for Web search, question answering, digital assistants, and online shopping. The advantages of machine learning techniques and the Web's growth have led to colossal knowledge graphs with billions of facts about hundreds of millions of entities collected from a large variety of sources. While integrating independent knowledge sources promises rich information, it inherently leads to heterogeneities in representation due to a large variety of different conceptualizations. Thus, real-world knowledge graphs are threatened in their overall utility. Due to their sheer size, they are hardly manually curatable anymore. Automatic and semi-automatic methods are needed to cope with these vast knowledge repositories. We first address the general topic of representation heterogeneity by surveying the problem throughout various data-intensive fields: databases, ontologies, and knowledge graphs. Different techniques for automatically resolving heterogeneity issues are presented and discussed, while several open problems are identified. Next, we focus on entity heterogeneity. We show that automatic matching techniques may run into quality problems when working in a multi-knowledge graph scenario due to incorrect transitive identity links. We present four techniques that can be used to improve the quality of arbitrary entity matching tools significantly. Concerning relation heterogeneity, we show that synonymous relations in knowledge graphs pose several difficulties in querying. Therefore, we resolve these heterogeneities with knowledge graph embeddings and by Horn rule mining. All methods detect synonymous relations in knowledge graphs with high quality. Furthermore, we present a novel technique for avoiding heterogeneity issues at query time using implicit knowledge storage. We show that large neural language models are a valuable source of knowledge that is queried similarly to knowledge graphs already solving several heterogeneity issues internally.Wissensgraphen sind eine wichtige Datenquelle von Entitätswissen. Sie unterstützen viele moderne KI-Anwendungen. Dazu gehören unter anderem Websuche, die automatische Beantwortung von Fragen, digitale Assistenten und Online-Shopping. Neue Errungenschaften im maschinellen Lernen und das außerordentliche Wachstum des Internets haben zu riesigen Wissensgraphen geführt. Diese umfassen häufig Milliarden von Fakten über Hunderte von Millionen von Entitäten; häufig aus vielen verschiedenen Quellen. Während die Integration unabhängiger Wissensquellen zu einer großen Informationsvielfalt führen kann, führt sie inhärent zu Heterogenitäten in der Wissensrepräsentation. Diese Heterogenität in den Daten gefährdet den praktischen Nutzen der Wissensgraphen. Durch ihre Größe lassen sich die Wissensgraphen allerdings nicht mehr manuell bereinigen. Dafür werden heutzutage häufig automatische und halbautomatische Methoden benötigt. In dieser Arbeit befassen wir uns mit dem Thema Repräsentationsheterogenität. Wir klassifizieren Heterogenität entlang verschiedener Dimensionen und erläutern Heterogenitätsprobleme in Datenbanken, Ontologien und Wissensgraphen. Weiterhin geben wir einen knappen Überblick über verschiedene Techniken zur automatischen Lösung von Heterogenitätsproblemen. Im nächsten Kapitel beschäftigen wir uns mit Entitätsheterogenität. Wir zeigen Probleme auf, die in einem Multi-Wissensgraphen-Szenario aufgrund von fehlerhaften transitiven Links entstehen. Um diese Probleme zu lösen stellen wir vier Techniken vor, mit denen sich die Qualität beliebiger Entity-Alignment-Tools deutlich verbessern lässt. Wir zeigen, dass Relationsheterogenität in Wissensgraphen zu Problemen bei der Anfragenbeantwortung führen kann. Daher entwickeln wir verschiedene Methoden um synonyme Relationen zu finden. Eine der Methoden arbeitet mit hochdimensionalen Wissensgrapheinbettungen, die andere mit einem Rule Mining Ansatz. Beide Methoden können synonyme Relationen in Wissensgraphen mit hoher Qualität erkennen. Darüber hinaus stellen wir eine neuartige Technik zur Vermeidung von Heterogenitätsproblemen vor, bei der wir eine implizite Wissensrepräsentation verwenden. Wir zeigen, dass große neuronale Sprachmodelle eine wertvolle Wissensquelle sind, die ähnlich wie Wissensgraphen angefragt werden können. Im Sprachmodell selbst werden bereits viele der Heterogenitätsprobleme aufgelöst, so dass eine Anfrage heterogener Wissensgraphen möglich wird

    Proceedings

    Get PDF
    Proceedings of the Workshop on Annotation and Exploitation of Parallel Corpora AEPC 2010. Editors: Lars Ahrenberg, Jörg Tiedemann and Martin Volk. NEALT Proceedings Series, Vol. 10 (2010), 98 pages. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15893

    Web-scale web table to knowledge base matching

    Full text link
    Millions of relational HTML tables are found on the World Wide Web. In contrast to unstructured text, relational web tables provide a compact representation of entities described by attributes. The data within these tables covers a broad topical range. Web table data is used for question answering, augmentation of search results, and knowledge base completion. Until a few years ago, only search engines companies like Google and Microsoft owned large web crawls from which web tables are extracted. Thus, researches outside the companies have not been able to work with web tables. In this thesis, the first publicly available web table corpus containing millions of web tables is introduced. The corpus enables interested researchers to experiment with web tables. A profile of the corpus is created to give insights to the characteristics and topics. Further, the potential of web tables for augmenting cross-domain knowledge bases is investigated. For the use case of knowledge base augmentation, it is necessary to understand the web table content. For this reason, web tables are matched to a knowledge base. The matching comprises three matching tasks: instance, property, and class matching. Existing web table to knowledge base matching systems either focus on a subset of these matching tasks or are evaluated using gold standards which also only cover a subset of the challenges that arise when matching web tables to knowledge bases. This thesis systematically evaluates the utility of a wide range of different features for the web table to knowledge base matching task using a single gold standard. The results of the evaluation are used afterwards to design a holistic matching method which covers all matching tasks and outperforms state-of-the-art web table to knowledge base matching systems. In order to achieve these goals, we first propose the T2K Match algorithm which addresses all three matching tasks in an integrated fashion. In addition, we introduce the T2D gold standard which covers a wide variety of challenges. By evaluating T2K Match against the T2D gold standard, we identify that only considering the table content is insufficient. Hence, we include features of three categories: features found in the table, in the table context like the page title, and features that base on external resources like a synonym dictionary. We analyze the utility of the features for each matching task. The analysis shows that certain problems cannot be overcome by matching each table in isolation to the knowledge base. In addition, relying on the features is not enough for the property matching task. Based on these findings, we extend T2K Match into T2K Match++ which exploits indirect matches to web tables about the same topic and uses knowledge derived from the knowledge base. We show that T2K Match++ outperforms all state-of-the-art web table to knowledge base matching approaches on the T2D and Limaye gold standard. Most systems show good results on one matching task but T2K Match++ is the only system that achieves F-measure scores above 0:8 for all tasks. Compared to results of the best performing system TableMiner+, the F-measure for the difficult property matching task is increased by 0.08, for the class and instance matching task by 0.05 and 0.03, respectively

    Semantic Systems. The Power of AI and Knowledge Graphs

    Get PDF
    This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies

    Exploring Spanish-English translation through conceptual metaphor components: A case study based on The Death of Artemio Cruz by Carlos Fuentes and its translators

    Get PDF
    This case study applies a multidisciplinary approach to explore real discourse^{1} in translation from a linguistic and literary perspective. The selected approach involves comparing the two translations of La muerte de Artemio Cruz, by Carlos Fuentes, published in English under the title The Death of Artemio Cruz. The criterion of linguistic deviation between the two translated texts is combined in this study with the literary use of metaphors in Fuentes’s novel in order to focus on the study of metaphors of deep significance both in the original and in the translation solutions proposed, and thereby explore what they say about translation and translators. Cognitive models are applied to the analysis of the fragments identified, in order to explore the role played by different metaphor components, as defined by Zoltán Kövecses; the aim is to determine the ways in which such components underpin and can help identify translation solutions based on language and translation features that convey culture-specific elements, and also to determine the extent to which they reveal the translator’s presence. Applying conceptual metaphor theory allows us to see in a more concrete way abstract elements conveyed through translation. Image schemas, in particular, which are dynamic spatial patterns such as path and container that give basic structure to our experiences and knowledge, provide a “more concrete” tool which allows us to visualize aspects transferred between languages and cultures that reveal the translator’s presence in the text. This multidisciplinary approach, although not systematic in a strict sense (because it does not set out to identify all metaphors and the corresponding components present in the selected text and translations), proves helpful in proposing translation procedures that go beyond the very general solutions proposed previously based on translating metaphors from the source language into the “same” or “different” metaphors or mappings in the target language. This new approach, with its focus on more concrete and basic structures, can provide the basis for a more objective methodology in the field of metaphor translation
    corecore