524 research outputs found

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    A Logical Characterization of Constraint-Based Causal Discovery

    Get PDF
    We present a novel approach to constraint-based causal discovery, that takes the form of straightforward logical inference, applied to a list of simple, logical statements about causal relations that are derived directly from observed (in)dependencies. It is both sound and complete, in the sense that all invariant features of the corresponding partial ancestral graph (PAG) are identified, even in the presence of latent variables and selection bias. The approach shows that every identifiable causal relation corresponds to one of just two fundamental forms. More importantly, as the basic building blocks of the method do not rely on the detailed (graphical) structure of the corresponding PAG, it opens up a range of new opportunities, including more robust inference, detailed accountability, and application to large models

    Graphical models for mediation analysis

    Full text link
    Mediation analysis seeks to infer how much of the effect of an exposure on an outcome can be attributed to specific pathways via intermediate variables or mediators. This requires identification of so-called path-specific effects. These express how a change in exposure affects those intermediate variables (along certain pathways), and how the resulting changes in those variables in turn affect the outcome (along subsequent pathways). However, unlike identification of total effects, adjustment for confounding is insufficient for identification of path-specific effects because their magnitude is also determined by the extent to which individuals who experience large exposure effects on the mediator, tend to experience relatively small or large mediator effects on the outcome. This chapter therefore provides an accessible review of identification strategies under general nonparametric structural equation models (with possibly unmeasured variables), which rule out certain such dependencies. In particular, it is shown which path-specific effects can be identified under such models, and how this can be done

    Vector Autoregressions, Policy Analysis, and Directed Acyclic Graphs: An Application to the U.S. Economy

    Get PDF
    The paper considers the use of directed acyclic graphs (DAGs), and their construction from observational data with PC-algorithm TETRAD II, in providing over-identifying restrictions on the innovations from a vector autoregression. Results from Sims’ 1986 model of the US economy are replicated and compared using these data-driven techniques. The directed graph results show Sims’ six-variable VAR is not rich enough to provide an unambiguous ordering at usual levels of statistical significance. A significance level in the neighborhood of 30 % is required to find a clear structural ordering. Although the DAG results are in agreement with Sims’ theory-based model for unemployment, differences are noted for the other five variables: income, money supply, price level, interest rates, and investment. Overall the DAG results are broadly consistent with a monetarist view with adaptive expectations and no hyperinflation.vector autoregression; directed graphs; policy analysis

    Identifying Independence in Relational Models

    Full text link
    The rules of d-separation provide a framework for deriving conditional independence facts from model structure. However, this theory only applies to simple directed graphical models. We introduce relational d-separation, a theory for deriving conditional independence in relational models. We provide a sound, complete, and computationally efficient method for relational d-separation, and we present empirical results that demonstrate effectiveness.Comment: This paper has been revised and expanded. See "Reasoning about Independence in Probabilistic Models of Relational Data" http://arxiv.org/abs/1302.438

    On the Foundations of Cycles in Bayesian Networks

    Full text link
    Bayesian networks (BNs) are a probabilistic graphical model widely used for representing expert knowledge and reasoning under uncertainty. Traditionally, they are based on directed acyclic graphs that capture dependencies between random variables. However, directed cycles can naturally arise when cross-dependencies between random variables exist, e.g., for modeling feedback loops. Existing methods to deal with such cross-dependencies usually rely on reductions to BNs without cycles. These approaches are fragile to generalize, since their justifications are intermingled with additional knowledge about the application context. In this paper, we present a foundational study regarding semantics for cyclic BNs that are generic and conservatively extend the cycle-free setting. First, we propose constraint-based semantics that specify requirements for full joint distributions over a BN to be consistent with the local conditional probabilities and independencies. Second, two kinds of limit semantics that formalize infinite unfolding approaches are introduced and shown to be computable by a Markov chain construction.Comment: Full version with an appendix containing the proof
    • …
    corecore