1,729 research outputs found

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), Covilhã, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)

    New dynamic subgrid-scale modelling approaches for large eddy simulation and resolved statistical geometry of wall-bounded turbulent shear flow

    Get PDF
    This dissertation consists of two parts, i.e. dynamic approaches for subgrid-scale (SGS) stress modelling for large eddy simulation and advanced assessment of the resolved scale motions related to turbulence geometrical statistics and topologies. The numerical simulations are based on turbulent Couette flow. The first part of the dissertation presents four contributions to the development of dynamic SGS models. The conventional integral type dynamic localization SGS model is in the form of a Fredholm integral equation of the second kind. This model is mathematically consistent, but demanding in computational cost. An efficient solution scheme has been developed to solve the integral system for turbulence with homogeneous dimensions. Current approaches to the dynamic two-parameter mixed model (DMM2) are mathematically inconsistent. As a second contribution, the DMM2 has been optimized and a modelling system of two integral equations has been rigorously obtained. The third contribution relates to the development of a novel dynamic localization procedure for the Smagorinsky model using the functional variational method. A sufficient and necessary condition for localization is obtained and a Picard's integral equation for the model coefficient is deduced. Finally, a new dynamic nonlinear SGS stress model (DNM) based on Speziale's quadratic constitutive relation [J. Fluid Mech., 178, p.459, 1987] is proposed. The DNM allows for a nonlinear anisotropic representation of the SGS stress, and exhibits a significant local stability and flexibility in self-calibration. In the second part, the invariant properties of the resolved velocity gradient tensor are studied using recently developed methodologies, i.e. turbulence geometrical statistics and topology. The study is a posteriori based on the proposed DNM, which is different than most of the current a priori approaches based on experimental or DNS databases. The performance of the DNM is further validated in terms of its capability of simulating advanced geometrical and topological features of resolved scale motions. Phenomenological results include, e.g. the positively skewed resolved enstrophy generation, the alignment between the vorticity and vortex stretching vectors, and the pear-shape joint probability function contour in the tensorial invariant phase plane. The wall anisotropic effect on these results is also examined

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Contributions to Open Problems on Cable Driven Robots and Persistent Manifolds for the Synthesis of Mechanisms

    Get PDF
    Although many efforts are continuously devoted to the advancement of robotics, there are still many open and unresolved problems to be faced. This thesis, therefore, sets out to tackle some of them with the aim of scratching the surface and look a little further for new ideas or solutions. The topics covered are mainly two. The first part deals with the development and improvement of control techniques for cable-driven robots. The second focuses on the study of persistent manifolds seen as constituting aspects of theoretical kinematics. In detail, -Part I deals with cable-driven platforms. In it, both techniques for selecting cable tensions and the design of a robust controller are developed. The aim is, therefore, to enhance the two building blocks of the overall control scheme in order to improve the performance of these robots during the execution of tracking tasks. -- The first chapter introduces to open problems and recalls the main concepts necessary to understand the following chapters; -- the contribution of the second chapter consists of the introduction of the Analytic Centre. It allows the generation of continuous and differentiable tension profiles while taking into account non-linear phenomena such as friction in the computation of tensions to be applied; -- the third chapter, although still at a preliminary stage, introduces sensitivity for tension calculation methods, offering perspectives of considerable interest for tension control in the current scientific context; -- the fourth chapter proposes the design of an adaptive controller. It allows external disturbances and/or uncertainties in the model to be faced such that the task can be performed with as little error as possible. The controller architecture is the innovative peculiarity conferring autonomy to cable systems. Initially applied to counteract wind in aerial systems it is now also used for cable breakage scenarios; -- the conclusions, at first, draw together the results obtained. In addition, they emphasise the lack of the techniques introduced in order to outline possible future paths and topics that need further investigation. - Part II delves into theoretical kinematics. The discovery and classification of invariant screw systems shed light on numerous aspects of robot mobility and synthesis. Nevertheless, this generated the emergence of new ideas and questions that are still unresolved. Among them, one of the more notable concerns the identification and classification of 5-dimensional persistent manifolds. -- Similarly to the first part, the first chapter provides an overview of the problems addressed and the theoretical notions necessary to understand the subsequent contributions; -- the second chapter contributes by directly tackling the above-mentioned question by exploiting the properties of dual quaternions, the Study quadric and differential geometry. A library of 5-persistent varieties, so far missing in the literature, is presented along with theorems that complete and generalise previous ones in the literature; -- an original work, concerning line motions and synthesis of mechanisms that generate them, is reported in the third chapter as a spin-off of the studies on persistent manifolds; -- the conclusions wrap up the obtained results trying to highlight gaps and deficiencies to be dealt with in the future. Here, two small sections are dedicated to ongoing works regarding the persistence definition and the screw systems' invariants and subvariants

    Mathematics teachers’ work with resources: four cases of secondary teachers using technology

    Get PDF
    This study examines teachers’ work with paper-based, technology and social resources with the use of two theoretical frameworks: the Documentational approach and the Knowledge Quartet. The former affords looking at teachers’ resources and resource systems and how these are utilized under schemes of work. The latter affords a closer look at teachers’ work during lessons and at their knowledge-in-action. Specifically, the study investigates how four upper secondary teachers use, re-use and balance their resources by looking at their schemes of work in class, through lesson observations; and, by reflecting on the details of their work and knowledge-in-action in pre- and post-observation interviews. Analysis examines five themes in relation to teachers’ work. First, teachers use students’ contributions as a resource during lessons. Second, teachers connect (or not) different resources. Third, institutional factors, such as examinations requirements and school policy, have impact on teachers’ decisions and on how they balance their resource use. Fourth, when mathematics-education software is used, teacher knowledge of the software comes into play. Fifth, there is ambiguity in the identification of contingency moments, particularly regarding whether these moments were anticipated (or not) or provoked by the teacher. These five themes also suggest theoretical findings. In relation to the Knowledge Quartet, the findings indicate the potency of adding a few new codes or extending existing codes. This is especially pertinent in the context of teaching upper secondary mathematics with technology resources. In relation to the Documentational approach, this study introduces two constructs: scheme-in-action and re-scheming. A scheme-in-action is the scheme followed in class and documented from the classroom. Re-scheming is scheming again or differently from one lesson to another. Finally, the study discusses implications for practice and proposes the use of key incidents extracted from classroom observations towards the development of teacher education resources (e.g. for the MathTASK programme)

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018
    • …
    corecore