1,351 research outputs found

    Query-Constraint-Based Mining of Association Rules for Exploratory Analysis of Clinical Datasets in the National Sleep Research Resource

    Get PDF
    Background: Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods: We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results: Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions: QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems

    Domain-mediated interactions for protein subfamily identification

    Get PDF
    Within a protein family, proteins with the same domain often exhibit different cellular functions, despite the shared evolutionary history and molecular function of the domain. We hypothesized that domain-mediated interactions (DMIs) may categorize a protein family into subfamilies because the diversified functions of a single domain often depend on interacting partners of domains. Here we systematically identified DMI subfamilies, in which proteins share domains with DMI partners, as well as with various functional and physical interaction networks in individual species. In humans, DMI subfamily members are associated with similar diseases, including cancers, and are frequently co-associated with the same diseases. DMI information relates to the functional and evolutionary subdivisions of human kinases. In yeast, DMI subfamilies contain proteins with similar phenotypic outcomes from specific chemical treatments. Therefore, the systematic investigation here provides insights into the diverse functions of subfamilies derived from a protein family with a link-centric approach and suggests a useful resource for annotating the functions and phenotypic outcomes of proteins.11Ysciescopu

    Bioinformatics in translational drug discovery

    Get PDF
    Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse ‘big data’ that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    Analysis of Data Collected in Pilot Study of Residential Radon in DeKalb County in 2015.

    Get PDF
    Dajun DaiRadon is a colorless, odorless, naturally occurring gas. It is currently the second leading cause of lung cancer and the number one cause of lung cancer to non-smokers in the United States. DeKalb County offers free screening for radon for residents. However, screening rates vary across the county. This pilot study focused on 14 selected tracts within DeKalb County with relatively low levels of radon screening. Over 200 households were recruited and homes were tested for indoor radon concentrations on the lowest livable floor over an 8-week period from March – May 2016. Tract-level characteristics were examined to understand the varitations of race, income, education, and poverty status between the 14 selected tracts and all of DeKalb County. The 14 selected tracts were comparable to all of DeKalb County in most factors besides race. Radon was detected in 73% of the homes sample and 4% had levels above the EPA guideline of 4 pCi/L. Multi-variate linear regression was used to compare all housing construction characteristics with radon concentrations and suggested that having a basement was the strongest predictive factor for detectable and/or hazardous levels of radon. Radon screening can identify problems and spur home owners to remediate but low screening rates may impact the potential health impact of free screening programs. More research should be done to identify why screening rates vary in order to identify ways to enhance screening and reduce radon exposure in DeKalb County
    corecore