1,428 research outputs found

    Duck Hunt: Memory Forensics of USB Attack Platforms

    Get PDF
    To explore the memory forensic artifacts generated by USB-based attack platforms, we analyzed two of the most popular commercially available devices, Hak5\u27s USB Rubber Ducky and Bash Bunny. We present two open source Volatility plugins, usbhunt and dhcphunt, which extract artifacts generated by these USB attacks from Windows 10 system memory images. Such artifacts include driver-related diagnostic events, unique device identifiers, and DHCP client logs. Our tools are capable of extracting metadata-rich Windows diagnostic events generated by any USB device. The device identifiers presented in this work may also be used to definitively detect device usage. Likewise, the DHCP logs we carve from memory may be useful in the forensic analysis of other network-connected peripherals. We also quantify how long these artifacts remain recoverable in memory. Our experiments demonstrated that some Indicators of Compromise (IOCs) remain in memory for at least 24 h

    Formal Mitigation Strategies for the Insider Threat: A Security Model and Risk Analysis Framework

    Get PDF
    The advancement of technology and reliance on information systems have fostered an environment of sharing and trust. The rapid growth and dependence on these systems, however, creates an increased risk associated with the insider threat. The insider threat is one of the most challenging problems facing the security of information systems because the insider already has capabilities within the system. Despite research efforts to prevent and detect insiders, organizations remain susceptible to this threat because of inadequate security policies and a willingness of some individuals to betray their organization. To investigate these issues, a formal security model and risk analysis framework are used to systematically analyze this threat and develop effective mitigation strategies. This research extends the Schematic Protection Model to produce the first comprehensive security model capable of analyzing the safety of a system against the insider threat. The model is used to determine vulnerabilities in security policies and system implementation. Through analysis, mitigation strategies that effectively reduce the threat are identified. Furthermore, an action-based taxonomy that expresses the insider threat through measurable and definable actions is presented. A risk analysis framework is also developed that identifies individuals within an organization that display characteristics indicative of a malicious insider. The framework uses a multidisciplinary process by combining behavior and technical attributes to produce a single threat level for each individual within the organization. Statistical analysis using the t-distribution and prediction interval on the threat levels reveal those individuals that are a potential threat to the organization. The effectiveness of the framework is illustrated using the case study of Robert Hanssen, demonstrating the process would likely have identified him as an insider threat

    P4TC - Provably-Secure yet Practical Privacy-Preserving Toll Collection

    Get PDF
    Electronic toll collection (ETC) is widely used all over the world not only to finance our road infrastructures, but also to realize advanced features like congestion management and pollution reduction by means of dynamic pricing. Unfortunately, existing systems rely on user identification and allow tracing a user’s movements. Several abuses of this personalized location data have already become public. In view of the planned Europeanwide interoperable tolling system EETS and the new EU General Data Protection Regulation, location privacy becomes of particular importance. In this paper, we propose a flexible security model and crypto protocol framework designed for privacy-preserving toll collection in the most dominant setting, i.e., Dedicated Short Range Communication (DSRC) ETC. A major challenge in designing the framework at hand was to combine provable security and practicality, where the latter includes practical performance figures and a suitable treatment of real-world issues, like broken onboard units etc. To the best of our knowledge, our work is the first in the DSRC setting with a rigorous security model and proof and arguably the most comprehensive formal treatment of ETC security and privacy overall. Additionally, we provide a prototypical implementation on realistic hardware which already features fairly practical performance figures. An interaction between an onboard unit and a road-side unit is estimated to take less than a second allowing for toll collection at full speed assuming one road-side unit per lane

    Three Essays on Individuals’ Vulnerability to Security Attacks in Online Social Networks: Factors and Behaviors

    Get PDF
    With increasing reliance on the Internet, the use of online social networks (OSNs) for communication has grown rapidly. OSN platforms are used to share information and communicate with friends and family. However, these platforms can pose serious security threats to users. In spite of the extent of such security threats and resulting damages, little is known about factors associated with individuals’ vulnerability to online security attacks. We address this gap in the following three essays. Essay 1 draws on a synthesis of the epidemic theory in infectious disease epidemiology with the social capital theory to conceptualize factors that contribute to an individual’s role in security threat propagation in OSN. To test the model, we collected data and created a network of hacked individuals over three months from Twitter. The final hacked network consists of over 8000 individual users. Using this data set, we derived individual’s factors measuring threat propagation efficacy and threat vulnerability. The dependent variables were defined based on the concept of epidemic theory in disease propagation. The independent variables are measured based on the social capital theory. We use the regression method for data analysis. The results of this study uncover factors that have significant impact on threat propagation efficacy and threat vulnerability. We discuss the novel theoretical and managerial contributions of this work. Essay 2 explores the role of individuals’ interests in their threat vulnerability in OSNs. In OSNs, individuals follow social pages and post contents that can easily reveal their topics of interest. Prior studies show high exposure of individuals to topics of interest can decrease individuals’ ability to evaluate the risks associated with their interests. This gives attackers a chance to target people based on what they are interested in. However, interest-based vulnerability is not just a risk factor for individuals themselves. Research has reported that similar interests lead to friendship and individuals share similar interests with their friends. This similarity can increase trust among friends and makes individuals more vulnerable to security threat coming from their friends’ behaviors. Despite the potential importance of interest in the propagation of online security attacks online, the literature on this topic is scarce. To address this gap, we capture individuals’ interests in OSN and identify the association between individuals’ interests and their vulnerability to online security threats. The theoretical foundation of this work is a synthesis of dual-system theory and the theory of homophily. Communities of interest in OSN were detected using a known algorithm. We test our model using the data set and social network of hacked individuals from Essay 1. We used this network to collect additional data about individuals’ interests in OSN. The results determine communities of interests which were associated with individuals’ online threat vulnerability. Moreover, our findings reveal that similarities of interest among individuals and their friends play a role in individuals’ threat vulnerability in OSN. We discuss the novel theoretical and empirical contributions of this work. Essay 3 examines the role addiction to OSNs plays in individuals’ security perceptions and behaviors. Despite the prevalence of problematic use of OSNs and the possibility of addiction to these platforms, little is known about the functionalities of brain systems of users who suffer from OSN addiction and their online security perception and behaviors. In addressing these gaps, we have developed the Online addiction & security behaviors (OASB) theory by synthesizing dual-system theory and extended protection motivation theory (PMT). We collected data through an online survey. The results indicate that OSN addiction is rooted in the individual’s brain systems. For the OSN addicted, there is a strong cognitive-emotional preoccupation with using OSN. Our findings also reveal the positive and significant impact of OSN addiction on perceived susceptibility to and severity of online security threats. Moreover, our results show the negative association between OSN addiction and perceived self-efficacy. We discuss the theoretical and practical implications of this work

    Prediction, evolution and privacy in social and affiliation networks

    Get PDF
    In the last few years, there has been a growing interest in studying online social and affiliation networks, leading to a new category of inference problems that consider the actor characteristics and their social environments. These problems have a variety of applications, from creating more effective marketing campaigns to designing better personalized services. Predictive statistical models allow learning hidden information automatically in these networks but also bring many privacy concerns. Three of the main challenges that I address in my thesis are understanding 1) how the complex observed and unobserved relationships among actors can help in building better behavior models, and in designing more accurate predictive algorithms, 2) what are the processes that drive the network growth and link formation, and 3) what are the implications of predictive algorithms to the privacy of users who share content online. The majority of previous work in prediction, evolution and privacy in online social networks has concentrated on the single-mode networks which form around user-user links, such as friendship and email communication. However, single-mode networks often co-exist with two-mode affiliation networks in which users are linked to other entities, such as social groups, online content and events. We study the interplay between these two types of networks and show that analyzing these higher-order interactions can reveal dependencies that are difficult to extract from the pair-wise interactions alone. In particular, we present our contributions to the challenging problems of collective classification, link prediction, network evolution, anonymization and preserving privacy in social and affiliation networks. We evaluate our models on real-world data sets from well-known online social networks, such as Flickr, Facebook, Dogster and LiveJournal

    Heuristics for Improved Enterprise Intrusion Detection

    Get PDF
    One of the greatest challenges facing network operators today is the identification of malicious activity on their networks. The current approach is to deploy a set of intrusion detection sensors (IDSs) in various locations throughout the network and on strategic hosts. Unfortunately, the available intrusion detection technologies generate an overwhelming volume of false alarms, making the task of identifying genuine attacks nearly impossible. This problem is very difficult to solve even in networks of nominal size. The task of uncovering attacks in enterprise class networks quickly becomes unmanageable. Research on improving intrusion detection sensors is ongoing, but given the nature of the problem to be solved, progress is slow. Research simultaneously continues in the field of mining the set of alarms produced by IDS sensors. Varying techniques have been proposed to aggregate, correlate, and classify the alarms in ways that make the end result more concise and digestible for human analysis. To date, the majority of these techniques have been successful only in networks of modest size. As a means of extending this research to real world, enterprise scale networks, we propose 5 heuristics supporting a three-pronged approach to the systematic evaluation of large intrusion detection logs. Primarily, we provide a set of algorithms to assist operations personnel in the daunting task of ensuring that no true attack goes unnoticed. Secondly, we provide information that can be used to tune the sensors which are deployed on the network, reducing the overall alarm volume, thus mitigating the monitoring costs both in terms of hardware and labor, and improving overall accuracy. Third, we provide a means of discovering stages of attacks that were overlooked by the analyst, based on logs of known security incidents. Our techniques work by applying a combination of graph algorithms and Markovian stochastic processes to perform probabilistic analysis as to whether an alarm is a true or false positive. Using these techniques it is possible to significantly reduce the total number of alarms and hosts which must be examined manually, while simultaneously discovering attacks that had previously gone unnoticed. The proposed algorithms are also successful at the discovery of new profiles for multi-stage attacks, and can be used in the automatic generation of meta-alarms, or rules to assist the monitoring infrastructure in performing automated analysis. We demonstrate that it is possible to successfully rank hosts which comprise the vertices of an Alarm Graph in a manner such that those hosts which are of highest risk for being involved in attack are immediately highlighted for examination or inclusion on hot lists. We close with an evaluation of 3 sensor profiling algorithms, and show that the order in which alarms are generated is tightly coupled with whether or not they are false positives. We show that by using time based Markovian analysis of the alarms, we are able to identify alarms which have a high probability of being attacks, and suppress more than 90% of false positives
    • …
    corecore