420 research outputs found

    Identifying Effective Features and Classifiers for Short Term Rainfall Forecast Using Rough Sets Maximum Frequency Weighted Feature Reduction Technique

    Get PDF
    Precise rainfall forecasting is a common challenge across the globe in meteorological predictions. As rainfall forecasting involves rather complex dynamic parameters, an increasing demand for novel approaches to improve the forecasting accuracy has heightened. Recently, Rough Set Theory (RST) has attracted a wide variety of scientific applications and is extensively adopted in decision support systems. Although there are several weather prediction techniques in the existing literature, identifying significant input for modelling effective rainfall prediction is not addressed in the present mechanisms. Therefore, this investigation has examined the feasibility of using rough set based feature selection and data mining methods, namely Naïve Bayes (NB), Bayesian Logistic Regression (BLR), Multi-Layer Perceptron (MLP), J48, Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Machine (SVM), to forecast rainfall. Feature selection or reduction process is a process of identifying a significant feature subset, in which the generated subset must characterize the information system as a complete feature set. This paper introduces a novel rough set based Maximum Frequency Weighted (MFW) feature reduction technique for finding an effective feature subset for modelling an efficient rainfall forecast system. The experimental analysis and the results indicate substantial improvements of prediction models when trained using the selected feature subset. CART and J48 classifiers have achieved an improved accuracy of 83.42% and 89.72%, respectively. From the experimental study, relative humidity2 (a4) and solar radiation (a6) have been identified as the effective parameters for modelling rainfall prediction

    Editorial for Vol 24, No 2

    Get PDF
    Editorial for Vol 24, No

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Flood Early Warning and Risk Modelling

    Get PDF
    Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Data Mining

    Get PDF
    Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment
    corecore