326 research outputs found

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    A Review of Subsequence Time Series Clustering

    Get PDF
    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies

    Clustering Time Series from Mixture Polynomial Models with Discretised Data

    Get PDF
    Clustering time series is an active research area with applications in many fields. One common feature of time series is the likely presence of outliers. These uncharacteristic data can significantly effect the quality of clusters formed. This paper evaluates a method of over-coming the detrimental effects of outliers. We describe some of the alternative approaches to clustering time series, then specify a particular class of model for experimentation with k-means clustering and a correlation based distance metric. For data derived from this class of model we demonstrate that discretising the data into a binary series of above and below the median improves the clustering when the data has outliers. More specifically, we show that firstly discretisation does not significantly effect the accuracy of the clusters when there are no outliers and secondly it significantly increases the accuracy in the presence of outliers, even when the probability of outlier is very low

    Efficient Kernel-Based Subsequence Search for Enabling Health Monitoring Services in IoT-Based Home Setting

    Get PDF
    This paper presents an efficient approach for subsequence search in data streams. The problem consists of identifying coherent repetitions of a given reference time-series, also in the multivariate case, within a longer data stream. The most widely adopted metric to address this problem is Dynamic Time Warping (DTW), but its computational complexity is a well-known issue. In this paper, we present an approach aimed at learning a kernel approximating DTW for efficiently analyzing streaming data collected from wearable sensors, while reducing the burden of DTW computation. Contrary to kernel, DTW allows for comparing two time-series with different length. To enable the use of kernel for comparing two time-series with different length, a feature embedding is required in order to obtain a fixed length vector representation. Each vector component is the DTW between the given time-series and a set of "basis" series, randomly chosen. The approach has been validated on two benchmark datasets and on a real-life application for supporting self-rehabilitation in elderly subjects has been addressed. A comparison with traditional DTW implementations and other state-of-the-art algorithms is provided: results show a slight decrease in accuracy, which is counterbalanced by a significant reduction in computational costs

    MTS2Graph: Interpretable Multivariate Time Series Classification with Temporal Evolving Graphs

    Full text link
    Conventional time series classification approaches based on bags of patterns or shapelets face significant challenges in dealing with a vast amount of feature candidates from high-dimensional multivariate data. In contrast, deep neural networks can learn low-dimensional features efficiently, and in particular, Convolutional Neural Networks (CNN) have shown promising results in classifying Multivariate Time Series (MTS) data. A key factor in the success of deep neural networks is this astonishing expressive power. However, this power comes at the cost of complex, black-boxed models, conflicting with the goals of building reliable and human-understandable models. An essential criterion in understanding such predictive deep models involves quantifying the contribution of time-varying input variables to the classification. Hence, in this work, we introduce a new framework for interpreting multivariate time series data by extracting and clustering the input representative patterns that highly activate CNN neurons. This way, we identify each signal's role and dependencies, considering all possible combinations of signals in the MTS input. Then, we construct a graph that captures the temporal relationship between the extracted patterns for each layer. An effective graph merging strategy finds the connection of each node to the previous layer's nodes. Finally, a graph embedding algorithm generates new representations of the created interpretable time-series features. To evaluate the performance of our proposed framework, we run extensive experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets. The experiments indicate the benefit of our time-aware graph-based representation in MTS classification while enriching them with more interpretability

    Identifikasi Motif Time Series Data Mining dengan Euclid

    Get PDF
    The development of information technology that is supported by storage media technology has brought about major changes to the availability of data warehouses. The availability of data warehouses is often overlooked because of the inability to process the data so that data stacks are often regarded as garbage, which should be used as decision support, one form of data warehouse that is often encountered today is time series. Therefore it is necessary to develop a method to improve the motive discovery of time series data mining. The method used is discretion so that it produces time series sub sequences, which are then clustered. The distance used is the euclid distance. The results obtained are the finding of motives in time series based on time that can be used as decision support and predictions in the future

    A survey of temporal knowledge discovery paradigms and methods

    Get PDF
    With the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and implemented systems are using an enhanced temporal understanding to explain aspects of behavior associated with the implicit time-varying nature of the universe. This paper investigates the confluence of these two areas, surveys the work to date, and explores the issues involved and the outstanding problems in temporal data mining

    Clustering of streaming time series is meaningless

    Get PDF

    Online pattern recognition in subsequence time series clustering

    Get PDF
    One of the open issues in the context of subsequence time series clustering is online pattern recognition. There are different fields in this clustering such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. Among these fields pattern recognition is one the essential concept. To implement the idea of online pattern recognition, we choose sequences of ECG data as a subsequence time series data. Additionally, using ECG data can help to interpret heart activity for finding heart diseases. This paper will offer a way to generate online pattern recognition in subsequence time series clustering in order to have a runtime results

    Mining subjectively interesting patterns in rich data

    Get PDF
    corecore