36,754 research outputs found

    G\mathcal{G}-SELC: Optimization by sequential elimination of level combinations using genetic algorithms and Gaussian processes

    Full text link
    Identifying promising compounds from a vast collection of feasible compounds is an important and yet challenging problem in the pharmaceutical industry. An efficient solution to this problem will help reduce the expenditure at the early stages of drug discovery. In an attempt to solve this problem, Mandal, Wu and Johnson [Technometrics 48 (2006) 273--283] proposed the SELC algorithm. Although powerful, it fails to extract substantial information from the data to guide the search efficiently, as this methodology is not based on any statistical modeling. The proposed approach uses Gaussian Process (GP) modeling to improve upon SELC, and hence named G\mathcal{G}-SELC. The performance of the proposed methodology is illustrated using four and five dimensional test functions. Finally, we implement the new algorithm on a real pharmaceutical data set for finding a group of chemical compounds with optimal properties.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS199 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking

    Full text link
    Montage is a portable software toolkit for constructing custom, science-grade mosaics by composing multiple astronomical images. The mosaics constructed by Montage preserve the astrometry (position) and photometry (intensity) of the sources in the input images. The mosaic to be constructed is specified by the user in terms of a set of parameters, including dataset and wavelength to be used, location and size on the sky, coordinate system and projection, and spatial sampling rate. Many astronomical datasets are massive, and are stored in distributed archives that are, in most cases, remote with respect to the available computational resources. Montage can be run on both single- and multi-processor computers, including clusters and grids. Standard grid tools are used to run Montage in the case where the data or computers used to construct a mosaic are located remotely on the Internet. This paper describes the architecture, algorithms, and usage of Montage as both a software toolkit and as a grid portal. Timing results are provided to show how Montage performance scales with number of processors on a cluster computer. In addition, we compare the performance of two methods of running Montage in parallel on a grid.Comment: 16 pages, 11 figure

    Long-lasting, kin-directed female interactions in a spatially structured wild boar social network

    Get PDF
    We thank W. Jędrzejewski for his support and logistical help in trapping wild boar. We are grateful to R. Kozak, A. Waszkiewicz and many students and volunteers for their help with fieldwork as well as to A. N. Bunevich, T. Borowik and local hunters for providing genetic samples. Genetic analyses were performed in the laboratory of the Department of Science for Nature and Environmental Resources, University of Sassari, Italy, with the help of L. Iacolina and D. Biosa. We are grateful to K. O’Mahony who revised English and to A. Widdig, K. Langergraber and one anonymous reviewer for valuable comments on the earlier version of the manuscript.Peer reviewedPublisher PD

    Two-layer particle filter for multiple target detection and tracking

    Get PDF
    This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets

    Spatial genetic structure in the saddled sea bream (Oblada melanura [Linnaeus, 1758]) suggests multi-scaled patterns of connectivity between protected and unprotected areas in the Western Mediterranean Sea

    Get PDF
    Marine protected areas (MPAs) and networks of MPAs are advocated worldwide for the achievement of marine conservation objectives. Although the knowledge about population connectivity is considered fundamental for the optimal design of MPAs and networks, the amount of information available for the Mediterranean Sea is currently scarce. We investigated the genetic structure of the saddled sea bream ( Oblada melanura) and the level of genetic connectivity between protected and unprotected locations, using a set of 11 microsatellite loci. Spatial patterns of population differentiation were assessed locally (50-100 km) and regionally (500-1000 km), considering three MPAs of the Western Mediterranean Sea. All values of genetic differentiation between locations (Fst and Jost's D) were non-significant after Bonferroni correction, indicating that, at a relatively small spatial scale, protected locations were in general well connected with non-protected ones. On the other hand, at the regional scale, discriminant analysis of principal components revealed the presence of a subtle pattern of genetic heterogeneity that reflects the geography and the main oceanographic features (currents and barriers) of the study area. This genetic pattern could be a consequence of different processes acting at different spatial and temporal scales among which the presence of admixed populations, large population sizes and species dispersal capacity, could play a major role. These outcomes can have important implications for the conservation biology and fishery management of the saddled sea bream and provide useful information for genetic population studies of other coastal fishes in the Western Mediterranean Sea
    corecore