9,786 research outputs found

    MicroRNA Genes and Their Target 3β€²-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    Get PDF
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3β€²-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3β€²-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3β€²-untranslated regions are thus uncommon in ovarian cancer

    Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer.

    Get PDF
    Recent genomic analyses have revealed substantial tumor heterogeneity across various cancers. However, it remains unclear whether and how genomic heterogeneity is constrained during tumor evolution. Here, we sequence a unique cohort of multiple synchronous lung cancers (MSLCs) to determine the relative diversity and uniformity of genetic drivers upon identical germline and environmental background. We find that each multicentric primary tumor harbors distinct oncogenic alterations, including novel mutations that are experimentally demonstrated to be functional and therapeutically targetable. However, functional studies show a strikingly constrained tumorigenic pathway underlying heterogeneous genetic variants. These results suggest that although the mutation-specific routes that cells take during oncogenesis are stochastic, genetic trajectories may be constrained by selection for functional convergence on key signaling pathways. Our findings highlight the robust evolutionary pressures that simultaneously shape the expansion and constraint of genomic diversity, a principle that holds important implications for understanding tumor evolution and optimizing therapeutic strategies.Across cancer types tumor heterogeneity has been observed, but how this relates to tumor evolution is unclear. Here, the authors sequence multiple synchronous lung cancers, highlighting the evolutionary pressures that simultaneously shape the expansion and constraint of genomic heterogeneity

    Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma.

    Get PDF
    Mice in which lung epithelial cells can be induced to express an oncogenic Kras(G12D) develop lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany lung adenocarcinomas, many of which are poorly understood. To get a comprehensive understanding of both the transcriptional and post-transcriptional changes that accompany lung adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome analysis of Kras(G12D) tumors from F1 hybrid mice revealed features specific to tumor samples. This includes the repression of a network of GTPase-related genes (Prkg1, Gnao1 and Rgs9) in tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. Furthermore, analysis of known single-nucleotide polymorphisms revealed not only a change in expression of Cd22 but also that its expression became allele specific in tumors. The most salient finding, however, came from small RNA sequencing of the tumor samples, which revealed that a cluster of ∼53 microRNAs and mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was markedly and consistently increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured Kras(G12D) tumor cells but reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer as well as embryogenesis. Taken together, our results strongly imply that these microRNAs represent key targets in unraveling the mechanism of lung oncogenesis

    Multi-omic investigation of the mechanisms underlying the pathobiology of head and neck squamous cell carcinomas

    Full text link
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy associated with molecular heterogeneity, locoregional spread, resistance to therapy and relapse after initial treatment. Increasing evidence suggests that master developmental pathways with key roles in adult tissue homeostasis, including Hippo and Wnt/Ξ²-catenin signaling, are dysregulated in the initiation and progression of HNSCC. However, a comprehensive investigation into the crosstalk between these pathways is currently lacking, and may prove crucial to the discovery of novel targets for HNSCC therapy. More recent evidence points to the tumor microenvironment, mainly comprising cancer-associated fibroblasts (CAFs), as capable of influencing tumor cell behavior and promoting invasive HNSCC phenotypes. Nonetheless, current methods to screen for CAF markers in tumors are restricted to targeted immunostaining experiments with limited success and robustness across tissue types. The Cancer Genome Atlas network has generated multi-tiered molecular profiles for over 10,000 tumors spanning more than two dozen different cancer types, providing an unprecedented opportunity for the application and development of integrative methods aimed at the in silico interrogation of experimentally-derived signatures. These multi-omic profiles further enable one to link genomic anomalies, including somatic mutations and DNA copy number alterations, with phenotypic effects driven by pathogenic pathway activity. Effectively querying this vast amount of information to help elucidate subsets of functionally and clinically-relevant oncogenic drivers, however, remains an ongoing challenge. To address these issues, I first investigate the effects of oncogenic pathway perturbation in HNSCC using experimental models coupled with in vitro genome-wide transcriptional profiling. Next, I describe a new computational approach for the unbiased identification of CAF markers in HNSCC solely using bulk tumor RNA-sequencing information. Lastly, I have developed Candidate Driver Analysis or CaDrA - a statistical framework that allows one to query genetic and epigenetic alterations for candidate drivers of signature activity within a given disease context. Collectively, this work offers new perspectives on the molecular cues underlying HNSCC development, while simultaneously highlighting the power of integrative genomics methods capable of accelerating the discovery of novel targets for cancer diagnosis and therapy

    NOVEL COMPUTATIONAL METHODS FOR CANCER GENOMICS DATA ANALYSIS

    Get PDF
    Cancer is a genetic disease responsible for one in eight deaths worldwide. The advancement of next-generation sequencing (NGS) technology has revolutionized the cancer research, allowing comprehensively profiling the cancer genome at great resolution. Large-scale cancer genomics research has sparked the needs for efficient and accurate Bioinformatics methods to analyze the data. The research presented in this dissertation focuses on three areas in cancer genomics: cancer somatic mutation detection; cancer driver genes identification and transcriptome profiling on single-cell level. NGS data analysis involves a series of complicated data transformation that convert raw sequencing data to the information that is interpretable by cancer researchers. The first project in the dissertation established a robust, reproducible and scalable cancer genomics data analysis workflow management system that automates the best practice mutation calling pipelines to detect somatic single nucleotide polymorphisms, insertion, deletion and copy number variation from NGS data. It integrates mutation annotation, clinically actionable therapy prediction and data visualization that streamlines the sequence-to-report data transformation. In order to differentiate the driver mutations buried among a vast pool of passenger mutations from a somatic mutation calling project, we developed MEScan in the second project, a novel method that enables genome-scale driver mutations identification based on mutual exclusivity test using cancer somatic mutation data. MEScan implements an efficient statistical framework to de novo screen mutual exclusive patterns and in the meantime taking into account the patient-specific and gene-specific background mutation rate and adjusting the heterogenous mutation frequency. It outperforms several existing methods based on simulation studies and real-world datasets. Genome-wide screening using existing TCGA somatic mutation data discovers novel cancer-specific and pan-cancer mutually exclusive patterns. Bulk RNA sequencing (RNA-Seq) has become one of the most commonly used techniques for transcriptome profiling in a wide spectrum of biomedical and biological research. Analyzing bulk RNA-Seq reads to quantify expression at each gene locus is the first step towards the identification of differentially expressed genes for downstream biological interpretation. Recent advances in single-cell RNA-seq (scRNA-seq) technology allows cancer biologists to profile gene expression on higher resolution cellular level. Preprocessing scRNA-seq data to quantify UMI-based gene count is the key to characterize intra-tumor cellular heterogeneity and identify rare cells that governs tumor progression, metastasis and treatment resistance. Despite its popularity, summarizing gene count from raw sequencing reads remains the one of the most time-consuming steps with existing tools. Current pipelines do not balance the efficiency and accuracy in large-scale gene count summarization in both bulk and scRNA-seq experiments. In the third project, we developed a light-weight k-mer based gene counting algorithm, FastCount, to accurately and efficiently quantify gene-level abundance using bulk RNA-seq or UMI-based scRNA-seq data. It achieves at least an order-of-magnitude speed improvement over the current gold standard pipelines while providing competitive accuracy
    • …
    corecore