69,913 research outputs found

    Centrality Measures for Networks with Community Structure

    Full text link
    Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is done to devise centrality measures which could efficiently identify the most influential nodes in the network. There are two major approaches to the problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology in order to find the influential nodes, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are required. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed that requires information only at the community level to identify the influential nodes in the network. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies with an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.Comment: 30 pages, 4 figures. Accepted for publication in Physica A. arXiv admin note: text overlap with arXiv:1411.627

    Community-based Immunization Strategies for Epidemic Control

    Full text link
    Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, in practice, information about the global structure of the contact network may not be available. Therefore, immunization strategies that can deal with a limited knowledge of the network structure are required. In this paper, we propose targeted immunization strategies that require information only at the community level. Results of our investigations on the SIR epidemiological model, using a realistic synthetic benchmark with controlled community structure, show that the community structure plays an important role in the epidemic dynamics. An extensive comparative evaluation demonstrates that the proposed strategies are as efficient as the most influential global centrality based immunization strategies, despite the fact that they use a limited amount of information. Furthermore, they outperform alternative local strategies, which are agnostic about the network structure, and make decisions based on random walks.Comment: 6 pages, 7 figure

    Optimal modularity and memory capacity of neural reservoirs

    Full text link
    The neural network is a powerful computing framework that has been exploited by biological evolution and by humans for solving diverse problems. Although the computational capabilities of neural networks are determined by their structure, the current understanding of the relationships between a neural network's architecture and function is still primitive. Here we reveal that neural network's modular architecture plays a vital role in determining the neural dynamics and memory performance of the network of threshold neurons. In particular, we demonstrate that there exists an optimal modularity for memory performance, where a balance between local cohesion and global connectivity is established, allowing optimally modular networks to remember longer. Our results suggest that insights from dynamical analysis of neural networks and information spreading processes can be leveraged to better design neural networks and may shed light on the brain's modular organization

    Data on face-to-face contacts in an office building suggests a low-cost vaccination strategy based on community linkers

    Full text link
    Empirical data on contacts between individuals in social contexts play an important role in providing information for models describing human behavior and how epidemics spread in populations. Here, we analyze data on face-to-face contacts collected in an office building. The statistical properties of contacts are similar to other social situations, but important differences are observed in the contact network structure. In particular, the contact network is strongly shaped by the organization of the offices in departments, which has consequences in the design of accurate agent-based models of epidemic spread. We consider the contact network as a potential substrate for infectious disease spread and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we define three typical behaviors according to the fraction ff of links each individual shares outside its own department: residents, wanderers and linkers. Linkers (f∼50%f\sim 50\%) act as bridges in the network and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently prevents large outbreaks. As such a behavior may be spotted a priori in the offices' organization or from surveys, without the full knowledge of the time-resolved contact network, this result may help the design of efficient, low-cost vaccination or social-distancing strategies

    The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior

    Full text link
    The symptoms of many infectious diseases influence their host to withdraw from social activity limiting their own potential to spread. Successful transmission therefore requires the onset of infectiousness to coincide with a time when its host is socially active. Since social activity and infectiousness are both temporal phenomena, we hypothesize that diseases are most pervasive when these two processes are synchronized. We consider disease dynamics that incorporate a behavioral response that effectively shortens the infectious period of the disease. We apply this model to data collected from face-to-face social interactions and look specifically at how the duration of the latent period effects the reachability of the disease. We then simulate the spread of the model disease on the network to test the robustness of our results. Diseases with latent periods that synchronize with the temporal social behavior of people, i.e. latent periods of 24 hours or 7 days, correspond to peaks in the number of individuals who are potentially at risk of becoming infected. The effect of this synchronization is present for a range of disease models with realistic parameters. The relationship between the latent period of an infectious disease and its pervasiveness is non-linear and depends strongly on the social context in which the disease is spreading.Comment: 9 Pages, 5 figure

    Reconstructing propagation networks with natural diversity and identifying hidden sources

    Get PDF
    Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#

    Why Information Matters: A Foundation for Resilience

    Get PDF
    Embracing Change: The Critical Role of Information, a research project by the Internews' Center for Innovation & Learning, supported by the Rockefeller Foundation, combines Internews' longstanding effort to highlight the important role ofinformation with Rockefeller's groundbreaking work on resilience. The project focuses on three major aspects:- Building knowledge around the role of information in empowering communities to understand and adapt to different types of change: slow onset, long-term, and rapid onset / disruptive;- Identifying strategies and techniques for strengthening information ecosystems to support behavioral adaptation to disruptive change; and- Disseminating knowledge and principles to individuals, communities, the private sector, policymakers, and other partners so that they can incorporate healthy information ecosystems as a core element of their social resilience strategies
    • …
    corecore