645 research outputs found

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations

    Can Network Analysis Techniques help to Predict Design Dependencies? An Initial Study

    Full text link
    The degree of dependencies among the modules of a software system is a key attribute to characterize its design structure and its ability to evolve over time. Several design problems are often correlated with undesired dependencies among modules. Being able to anticipate those problems is important for developers, so they can plan early for maintenance and refactoring efforts. However, existing tools are limited to detecting undesired dependencies once they appeared in the system. In this work, we investigate whether module dependencies can be predicted (before they actually appear). Since the module structure can be regarded as a network, i.e, a dependency graph, we leverage on network features to analyze the dynamics of such a structure. In particular, we apply link prediction techniques for this task. We conducted an evaluation on two Java projects across several versions, using link prediction and machine learning techniques, and assessed their performance for identifying new dependencies from a project version to the next one. The results, although preliminary, show that the link prediction approach is feasible for package dependencies. Also, this work opens opportunities for further development of software-specific strategies for dependency prediction.Comment: Accepted at ICSA 201

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring of Technical Debt should be prioritized with respect to developing features or fixing bugs.Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review of 557 unique papers published until 2019, following a consolidated methodology applied in software engineering. We included 44 primary studies.Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and proposing optimization regarding different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We present an impact map of such factors. However, there is a lack of empirical and validated set of tools.Conclusion. We observed that Technical Debt prioritization research is preliminary and there is no consensus on what the important factors are and how to measure them. Consequently, we cannot consider current research\ua0conclusive. In this paper, we therefore outline different directions for necessary future investigations

    Challenges in understanding, measuring, and managing technical debt

    Get PDF
    Abstract. Technical debt as a concept is vast and somewhat abstract area. The most basic definition of it is that it is analogous to a bank loan, which must be paid back so you don’t get stated bankrupt. Number of activities required to manage the debt are numerous, as 15 different sources of possible debt are identified. Technical debt management activities, possible sources, and outcomes that unpaid debt might bring are documented in this paper’s background section. Results section contains challenges that technical debt management processes are encountering in understanding, measuring, and managing the debt. Even with existing empirical research on technical debt management, research and industry are having hard time in trying to find the right tools and areas to measure to gain meaningful information on numerous types of technical debt. Without the right metrics, the monitoring tools are not able to provide useful information to aid in communication and decision-making. Currently, the tools focus mainly on code smells (code debt) and are not able to measure the most important aspects of the debt, design, and architectural debt. This research suggests future research topics to improve existing knowledge on certain areas such as the previously mentioned ability to meaningfully measure different kinds of debts

    Understanding automated and human-based technical debt identification approaches-a two-phase study

    Get PDF
    Context: The technical debt (TD) concept inspires the development of useful methods and tools that support TD identification and management. However, there is a lack of evidence on how different TD identification tools could be complementary and, also, how human-based identification compares with them. Objective: To understand how to effectively elicit TD from humans, to investigate several types of tools for TD identification, and to understand the developers’ point of view about TD indicators and items reported by tools. Method: We asked developers to identify TD items from a real software project. We also collected the output of three tools to automatically identify TD and compared the results in terms of their locations in the source code. Then, we collected developers’ opinions on the identification process through a focus group. Results: Aggregation seems to be an appropriate way to combine TD reported by developers. The tools used cannot help in identifying many important TD types, so involving humans is necessary. Developers reported that the tools would help them to identify TD faster or more accurately and that project priorities and current development activities are important to be considered together, along with the values of principal and interest, when deciding to pay off a debt. Conclusion: This work contributes to the TD landscape, which depicts an understanding between different TD types and how they are best discovered

    Identifying Design Problems in the Source Code:A Grounded Theory

    Get PDF
    The prevalence of design problems may cause re-engineering or even discontinuation of the system. Due to missing, informal or outdated design documentation, developers often have to rely on the source code to identify design problems. Therefore, developers have to analyze different symptoms that manifest in several code elements, which may quickly turn into a complex task. Although researchers have been investigating techniques to help developers in identifying design problems, there is little knowledge on how developers actually proceed to identify design problems. In order to tackle this problem, we conducted a multi-trial industrial experiment with professionals from 5 software companies to build a grounded theory. The resulting theory offers explanations on how developers identify design problems in practice. For instance, it reveals the characteristics of symptoms that developers consider helpful. Moreover, developers often combine different types of symptoms to identify a single design problem. This knowledge serves as a basis to further understand the phenomena and advance towards more effective identification techniques
    • …
    corecore