542 research outputs found

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice

    Scalable Machine Learning Methods for Massive Biomedical Data Analysis.

    Full text link
    Modern data acquisition techniques have enabled biomedical researchers to collect and analyze datasets of substantial size and complexity. The massive size of these datasets allows us to comprehensively study the biological system of interest at an unprecedented level of detail, which may lead to the discovery of clinically relevant biomarkers. Nonetheless, the dimensionality of these datasets presents critical computational and statistical challenges, as traditional statistical methods break down when the number of predictors dominates the number of observations, a setting frequently encountered in biomedical data analysis. This difficulty is compounded by the fact that biological data tend to be noisy and often possess complex correlation patterns among the predictors. The central goal of this dissertation is to develop a computationally tractable machine learning framework that allows us to extract scientifically meaningful information from these massive and highly complex biomedical datasets. We motivate the scope of our study by considering two important problems with clinical relevance: (1) uncertainty analysis for biomedical image registration, and (2) psychiatric disease prediction based on functional connectomes, which are high dimensional correlation maps generated from resting state functional MRI.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111354/1/takanori_1.pd

    Generative-Discriminative Low Rank Decomposition for Medical Imaging Applications

    Get PDF
    In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features. However, extracting such information from medical images is a challenging task because the number of pixels (voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in this thesis to improve the generalization performance of the prediction task. We propose a novel discriminative dimensionality reduction method that yields good classification performance on various datasets without compromising the clinical interpretability of the results. This is achieved by combining the modelling strength of generative learning framework and the classification performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional measure of evaluation and is also helpful in designing methods that account for the clinical prior such as association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via neural fibres. We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization. Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the computational bottle-neck of the optimization problem. Our formulation is readily extended for different scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that by using various notions of sparsity as feasible sets of the optimization problem, we can encode different forms of prior knowledge ranging from brain parcellation to brain connectivity

    Geometric deep learning for Alzheimer's disease analysis

    Get PDF
    Alzheimer’s Disease (AD) represents between 50-70% of the cases of dementia, which translates in around 25-35 million people affected by this disease. During its development, patients suffering from AD experience an irreversible cognitive decline, which limits their autonomy on their daily lives. While many of the causes of AD are still unknown, researchers have noticed a abnormal amyloid deposition and neurofibrillary tangles that will start affecting the short-term memory of the patient, together with other cognitive functions. In fact, these pathophysiological changes start taking place even before the patient experiences the first symptoms. One of the structures that is first affected by the disease is the hippocampus. During the development of AD, this part of the brain experiences an irregular deformation that affects its capabilities of forming new memories. Therefore, many clinical work has set a focus on studying this structure and its evolution along the disease. Identifying the changes it suffers can help us understand better the causes of the patient's cognitive decline. Given the complexity that characterizes AD, identifying patterns during its development is still a cumbersome task for physicians.Thus, aiding the diagnosis and prognosis of the disease using Deep Learning methods can be highly beneficial, as seen for other medical applications. In particular, if the focus is set on single structures (e.g. the hippocampus) Geometric Deep Learning offers a set of models that are best suited for 3D shape representations. We believe these methods can help doctors identify abnormalities in the structure that can lead to AD in the future. In this work, we first study the capabilities of current Geometric Deep Learning methods in diagnosing patients suffering from AD, by only looking at the hippocampus. We start by studying one of the simplest 3d representations, point clouds. We continue by comparing this representation to other non-Euclidean representations, such as meshes, and also Euclidean ones (e.g. 3d masks). We observe that meshes are one of the optimal ways of representing 3d structures for capturing fine-grained changes, but they carry additional pre-processing steps that Euclidean representations do not require. Finally, once we have confirmed that Geometric Deep Learning, particularly mesh neural networks, can properly capture the effects of AD on the hippocampus, we expand their application to longitudinal analysis of the structure. We propose a new temporal model based on Spiral Resnet and Transformers that sets a new state-of-the-art for the task of predicting longitudinal trajectories of the hippocampus. We also evaluated the effect that imputing missing longitudinal data has on detecting subjects that are developping to AD. Our experiments show an increase of a 3% in distinguishing between converting and stable trajectories

    MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis

    Get PDF
    Abstract The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets
    • …
    corecore