59 research outputs found

    Top influencers can be identified universally by combining classical centralities

    Get PDF
    Information flow, opinion, and epidemics spread over structured networks. When using individual node centrality indicators to predict which nodes will be among the top influencers or spreaders in a large network, no single centrality has consistently good ranking power. We show that statistical classifiers using two or more centralities as input are instead consistently predictive over many diverse, static real-world topologies. Certain pairs of centralities cooperate particularly well in statistically drawing the boundary between the top spreaders and the rest: local centralities measuring the size of a node's neighbourhood benefit from the addition of a global centrality such as the eigenvector centrality, closeness, or the core number. This is, intuitively, because a local centrality may rank highly some nodes which are located in dense, but peripheral regions of the network---a situation in which an additional global centrality indicator can help by prioritising nodes located more centrally. The nodes selected as superspreaders will usually jointly maximise the values of both centralities. As a result of the interplay between centrality indicators, training classifiers with seven classical indicators leads to a nearly maximum average precision function (0.995) across the networks in this study.Comment: 14 pages, 10 figures, 4 supplementary figure

    A Network Science perspective of Graph Convolutional Networks: A survey

    Full text link
    The mining and exploitation of graph structural information have been the focal points in the study of complex networks. Traditional structural measures in Network Science focus on the analysis and modelling of complex networks from the perspective of network structure, such as the centrality measures, the clustering coefficient, and motifs and graphlets, and they have become basic tools for studying and understanding graphs. In comparison, graph neural networks, especially graph convolutional networks (GCNs), are particularly effective at integrating node features into graph structures via neighbourhood aggregation and message passing, and have been shown to significantly improve the performances in a variety of learning tasks. These two classes of methods are, however, typically treated separately with limited references to each other. In this work, aiming to establish relationships between them, we provide a network science perspective of GCNs. Our novel taxonomy classifies GCNs from three structural information angles, i.e., the layer-wise message aggregation scope, the message content, and the overall learning scope. Moreover, as a prerequisite for reviewing GCNs via a network science perspective, we also summarise traditional structural measures and propose a new taxonomy for them. Finally and most importantly, we draw connections between traditional structural approaches and graph convolutional networks, and discuss potential directions for future research

    A Multi-Transformation Evolutionary Framework for Influence Maximization in Social Networks

    Full text link
    Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.Comment: This work has been submitted to the IEEE Computational Intelligence Magazine for publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Big networks : a survey

    Get PDF
    A network is a typical expressive form of representing complex systems in terms of vertices and links, in which the pattern of interactions amongst components of the network is intricate. The network can be static that does not change over time or dynamic that evolves through time. The complication of network analysis is different under the new circumstance of network size explosive increasing. In this paper, we introduce a new network science concept called a big network. A big networks is generally in large-scale with a complicated and higher-order inner structure. This paper proposes a guideline framework that gives an insight into the major topics in the area of network science from the viewpoint of a big network. We first introduce the structural characteristics of big networks from three levels, which are micro-level, meso-level, and macro-level. We then discuss some state-of-the-art advanced topics of big network analysis. Big network models and related approaches, including ranking methods, partition approaches, as well as network embedding algorithms are systematically introduced. Some typical applications in big networks are then reviewed, such as community detection, link prediction, recommendation, etc. Moreover, we also pinpoint some critical open issues that need to be investigated further. © 2020 Elsevier Inc

    Where do migrants and natives belong in a community : a Twitter case study and privacy risk analysis

    Get PDF
    Today, many users are actively using Twitter to express their opinions and to share information. Thanks to the availability of the data, researchers have studied behaviours and social networks of these users. International migration studies have also benefited from this social media platform to improve migration statistics. Although diverse types of social networks have been studied so far on Twitter, social networks of migrants and natives have not been studied before. This paper aims to fill this gap by studying characteristics and behaviours of migrants and natives on Twitter. To do so, we perform a general assessment of features including profiles and tweets, and an extensive network analysis on the network. We find that migrants have more followers than friends. They have also tweeted more despite that both of the groups have similar account ages. More interestingly, the assortativity scores showed that users tend to connect based on nationality more than country of residence, and this is more the case for migrants than natives. Furthermore, both natives and migrants tend to connect mostly with natives. The homophilic behaviours of users are also well reflected in the communities that we detected. Our additional privacy risk analysis showed that Twitter data can be safely used without exposing sensitive information of the users, and minimise risk of re-identification, while respecting GDPR

    Fundamentals of spreading processes in single and multilayer complex networks

    Get PDF
    Spreading processes have been largely studied in the literature, both analytically and by means of large-scale numerical simulations. These processes mainly include the propagation of diseases, rumors and information on top of a given population. In the last two decades, with the advent of modern network science, we have witnessed significant advances in this field of research. Here we review the main theoretical and numerical methods developed for the study of spreading processes on complex networked systems. Specifically, we formally define epidemic processes on single and multilayer networks and discuss in detail the main methods used to perform numerical simulations. Throughout the review, we classify spreading processes (disease and rumor models) into two classes according to the nature of time: (i) continuous-time and (ii) cellular automata approach, where the second one can be further divided into synchronous and asynchronous updating schemes. Our revision includes the heterogeneous mean-field, the quenched-mean field, and the pair quenched mean field approaches, as well as their respective simulation techniques, emphasizing similarities and differences among the different techniques. The content presented here offers a whole suite of methods to study epidemic-like processes in complex networks, both for researchers without previous experience in the subject and for experts.Comment: Review article. 73 pages, including 24 figure
    • …
    corecore