195 research outputs found

    A review of variable-pitch propellers and their control strategies in aerospace systems

    Full text link
    The relentless pursuit of aircraft flight efficiency has thrust variable-pitch propeller technology into the forefront of aviation innovation. This technology, rooted in the ancient power unit of propellers, has found renewed significance, particularly in the realms of unmanned aerial vehicles and urban air mobility. This underscores the profound interplay between visionary aviation concepts and the enduring utility of propellers. Variable-pitch propellers are poised to be pivotal in shaping the future of human aviation, offering benefits such as extended endurance, enhanced maneuverability, improved fuel economy, and prolonged engine life. However, with additional capabilities come new technical challenges. The development of an online adaptive control of variable-pitch propellers that does not depend on an accurate dynamic model stands as a critical imperative. Therefore, a comprehensive review and forward-looking analysis of this technology is warranted. This paper introduces the development background of variable-pitch aviation propeller technology, encompassing diverse pitch angle adjustment schemes and their integration with various engine types. It places a central focus on the latest research frontiers and emerging directions in pitch control strategies. Lastly, it delves into the research domain of constant speed pitch control, articulating the three main challenges confronting this technology: inadequacies in system modeling, the intricacies of propeller-engine compatibility, and the impact of external, time-varying factors. By shedding light on these multifaceted aspects of variable-pitch propeller technology, this paper serves as a resource for aviation professionals and researchers navigating the intricate landscape of future aircraft development

    Control requirements for future gas turbine-powered unmanned drones: JetQuads

    Get PDF
    The next generation of aerial robots will be utilized extensively in real-world applications for different purposes: Delivery, entertainment, inspection, health and safety, photography, search and rescue operations, fire detection, and use in hazardous and unreachable environments. Thus, dynamic modeling and control of drones will play a vital role in the growth phase of this cutting-edge technology. This paper presents a systematic approach for control mode identification of JetQuads (gas turbine-powered quads) that should be satisfied simultaneously to achieve a safe and optimal operation of the JetQuad. Using bond graphs as a powerful mechatronic tool, a modular model of a JetQuad including the gas turbine, electric starter, and the main body was developed and validated against publicly available data. Two practical scenarios for thrust variation as a function of time were defined to investigate the compatibility and robustness of the JetQuad. The simulation results of these scenarios confirmed the necessity of designing a compatibility control loop, a stability control loop, and physical limitation control loops for the safe and errorless operation of the system. A control structure with its associated control algorithm is also proposed to deal with future challenges in JetQuad control problems

    Designing and building a hybrid (electric/ic) UAV

    Get PDF
    In comparison with conventional internal combustion (IC) engine power trains, a hybrid electric propulsion system with two or more energy sources has proved to be a more effective in terms of pollution rate, and a reduction of heat release and sound effects. For applications of hybrid electric/IC propulsion to vehicles and especially military, it has been demonstrated that considerable improvement of energy use by reducing fuel consumption required for basic functions occurs. Due to these factors, the use of unmanned aerial vehicles (UAVs) may be adopted to civil service as well. This might include detecting and monitoring disaster, hazards, and environment conditions, and reserving backup power for emergency. Based on the above information, this Capstone Project aims to develop the design a prototype of an economical and practical small scale tilt-rotor UAV, with emphasis on good performance characteristics, including high endurance, a rotor-tilting mechanism, payload capacity and vertical to horizontal transition stability. The main focus was on optimizing the aerodynamic parameters of fixed-wing prototype and combining the hovering abilities of a multi-rotor UAV. The CAD model built in SolidWorks, computational analysis and simulations of the vehicle performance in Ansys CFX related to this project are delivered as well. In addition, laboratory work was done in order to check performance of both the engine and generator

    Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    Get PDF
    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraf

    Modeling and flight testing of differential thrust and thrust vectoring on a small UAV

    Get PDF
    The primary objectives of this research are to mathematically model the propulsion forces applied to the aircraft during nominal, differential thrust, and thrust vectored flight configurations, and verify this modeling through simulation and flight testing experiments. This thesis outlines the modeling process, simulator development, design, and implementation of a propulsion assisted control system for the WVU Flight Control Systems Lab (FCSL) research aircraft. Differential thrust and thrust vectoring introduce additional propulsive terms in the aircraft force equations that are not present when the thrust line passes through the center of gravity. These additional forces were modeled and incorporated into a simulator of the research aircraft. The effects from differential thrust were small and difficult to quantify. The thrust vectoring effects were also found to be small with the elevator having significantly more pitch control over the vectored motors at the simulated flight conditions.;Differential thrust was implemented using the on-board computer to command a different thrust level to each motor. The desired thrust differential was programed into a flight scheme based on simulation data, and activated during flight via a control switch on the transmitter. The thrust vectoring mechanism was designed using SolidWorksRTM, built and tested outside of the aircraft, and finally incorporated into the aircraft. A high torque servo was used to rotate the motor mounting bar and vector the motors to a desired deflection. Utilizing this mechanism, the thrust vectoring was flight tested, mimicking scenarios tested in simulation. The signal to noise ratio was very low, making it difficult to identify the small changes in the aircraft parameters caused by the vectored thrust

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Rotorcraft Blade Pitch Control Through Torque Modulation

    Get PDF
    Micro air vehicle (MAV) technology has broken with simple mimicry of manned aircraft in order to fulfill emerging roles which demand low-cost reliability in the hands of novice users, safe operation in confined spaces, contact and manipulation of the environment, or merging vertical flight and forward flight capabilities. These specialized needs have motivated a surge of new specialized aircraft, but the majority of these design variations remain constrained by the same fundamental technologies underpinning their thrust and control. This dissertation solves the problem of simultaneously governing MAV thrust, roll, and pitch using only a single rotor and single motor. Such an actuator enables new cheap, robust, and light weight aircraft by eliminating the need for the complex ancillary controls of a conventional helicopter swashplate or the distributed propeller array of a quadrotor. An analytic model explains how cyclic blade pitch variations in a special passively articulated rotor may be obtained by modulating the main drive motor torque in phase with the rotor rotation. Experiments with rotors from 10 cm to 100 cm in diameter confirm the predicted blade lag, pitch, and flap motions. We show the operating principle scales similarly as traditional helicopter rotor technologies, but is subject to additional new dynamics and technology considerations. Using this new rotor, experimental aircraft from 29 g to 870 g demonstrate conventional flight capabilities without requiring more than two motors for actuation. In addition, we emulate the unusual capabilities of a fully actuated MAV over six degrees of freedom using only the thrust vectoring qualities of two teetering rotors. Such independent control over forces and moments has been previously obtained by holonomic or omnidirection multirotors with at least six motors, but we now demonstrate similar abilities using only two. Expressive control from a single actuator enables new categories of MAV, illustrated by experiments with a single actuator aircraft with spatial control and a vertical takeoff and landing airplane whose flight authority is derived entirely from two rotors

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers

    Design & Implementation of an Electric Fixed-wing Hybrid VTOL UAV for Asset Monitoring

    Get PDF
    Fixed-wing unmanned aerial vehicles (UAVs) offer the best aerodynamic efficiency required for long-distance or high-endurance applications, albeit their runway requirement for take-off and landing in comparison with quadcopters, helicopters, and flapping-wing UAVs that can perform vertical take-off and landing (VTOL). Integrating a multirotor system with a fixed-wing UAV imparts VTOL capabilities without significantly compromising fixed-wing aerodynamic efficiency, endurance, payload capacity or range. Documented system design approaches to address various challenges of such fusion processes are sparse. This research proposes a holistic approach for designing, prototyping, and testing an electric-powered fixed-wing hybrid VTOL UAV. The proposed system design approach augments the standard aircraft design process with additional steps to integrate VTOL capabilities. Separate fixed-wing and multirotor designs were derived from the frozen mission requirements, which were then fused. The process used simulation for modeling and evaluating alternatives for the hybrid UAV created using standard aircraft design equations. We prototyped and instrumented the final design to validate operational capabilities through test flights. Multiple flight trials identified the ideal combination of Lithium-Polymer (Li-Po) batteries for VTOL (8000mAh) and fixed-wing (14000mAh) modes to meet the endurance and range requirements. The redundant power supplies also increased the survivability chances of the hybrid UAV during failures
    corecore