77 research outputs found

    Design and Applications of Coordinate Measuring Machines

    Get PDF
    Coordinate measuring machines (CMMs) have been conventionally used in industry for 3-dimensional and form-error measurements of macro parts for many years. Ever since the first CMM, developed by Ferranti Co. in the late 1950s, they have been regarded as versatile measuring equipment, yet many CMMs on the market still have inherent systematic errors due to the violation of the Abbe Principle in its design. Current CMMs are only suitable for part tolerance above 10 μm. With the rapid advent of ultraprecision technology, multi-axis machining, and micro/nanotechnology over the past twenty years, new types of ultraprecision and micro/nao-CMMs are urgently needed in all aspects of society. This Special Issue accepted papers revealing novel designs and applications of CMMs, including structures, probes, miniaturization, measuring paths, accuracy enhancement, error compensation, etc. Detailed design principles in sciences, and technological applications in high-tech industries, were required for submission. Topics covered, but were not limited to, the following areas: 1. New types of CMMs, such as Abbe-free, multi-axis, cylindrical, parallel, etc. 2. New types of probes, such as touch-trigger, scanning, hybrid, non-contact, microscopic, etc. 3. New types of Micro/nano-CMMs. 4. New types of measuring path strategy, such as collision avoidance, free-form surface, aspheric surface, etc. 5. New types of error compensation strategy

    Fiber bragg gratings for medical applications and future challenges: A review

    Get PDF
    In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system

    Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review

    Full text link
    [EN] In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system.This work was supported in part by INAIL (the Italian National Institute for Insurance against Accident at Work), through the BRIC (Bando ricerche in collaborazione) 2018 SENSE-RISC (Sviluppo di abiti intelligENti Sensorizzati per prevenzione e mitigazione di Rischi per la SiCurezza dei lavoratori) Project under Grant ID10/2018, in part by the UCBM (Universita Campus Bio-Medico di Roma) under the University Strategic HOPE (HOspital to the PatiEnt) Project, in part by the EU Framework Program H2020-FETPROACT-2018-01 NeuHeart Project under Grant GA 824071, by FCT/MEC (Fundacao para a Ciencia e Tecnologia) under the Projects UIDB/50008/2020 - UIDP/50008/2020, and by REACT (Development of optical fiber solutions for Rehabilitation and e-Health applications) FCT-IT-LA scientific action.Lo Presti, D.; Massaroni, C.; Leitao, CSJ.; Domingues, MDF.; Sypabekova, M.; Barrera, D.; Floris, I.... (2020). Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access. 8:156863-156888. https://doi.org/10.1109/ACCESS.2020.3019138S156863156888

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    Enhanced Piezoelectric Performance of Printed PZT Films on Low Temperature Substrates

    Get PDF
    Since piezoelectric effect was discovered in 1880, it has been widely used in micro-actuators, sensors, and energy harvesters. Lead Zirconate Titanate (PZT) is a commonly used piezoelectric material due to the high piezoelectric response. The basic PZT film fabrication process includes deposition, sintering, and poling. However, due to the high sintering temperature (\u3e 800 °C) of PZT, only high melting point material can be served as the substrate. Otherwise, complex film transfer approach is needed to achieve flexible and foldable PZT devices. The exploration is accordingly necessary to realize direct fabrication of PZT films on low melting point substrates without affecting the piezoelectric performance. In order to lower the PZT film sintering temperature, in this work, the effect of the powder size and sintering aid on the sintering temperature was studied. A maskless, CAD driven, non-contact direct printing system, aerosol jet printer, was used to deposit PZT thick films on the substrate. This technique allows creating features without masking and etching processes that are generally required for realizing designed features via conventional deposition approaches. Broadband, sub-millisecond, high intensity flash pulses were used to sinter the PZT films. The role of all sintering parameters was investigated to regulate the sintering quality of the PZT thick films. The photonically sintered films showed much lower substrate temperature increase mainly due to the extremely short pulse duration and temperature gradient through the film thickness. The superior piezoelectric property to thermally sintered group was also obtained. This process significantly shortens the processing duration and dramatically expands the possible substrate materials. It accordingly opens the possibility of processing PZT film directly on low melting point materials. A PZT energy harvester based on this process was directly fabricated on the polyethylene terephthalate (PET) substrate to demonstrate the capability. The relation between the load and the generated power was investigated to obtain the highest output power. Up to 0.1 μW was generated from this flexible energy harvester when connected with 10 MΩ resistive load. Photonic sintering of PZT film also creates the opportunity of processing poling during sintering. Different combinations of the sintering and poling techniques were studied. It was observed that the best piezoelectric property was obtained while performing poling during photonic sintering. Consequently, a new method of printing, sintering, and poling of micro-scaled PZT films was demonstrated in this work resulting in high performance films. This process provides the capability of realizing PZT devices on low temperature substrate, facilitates the fabrication of flexible piezoelectric devices, and enhances the piezoelectric property

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF
    corecore