725 research outputs found

    KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Get PDF
    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V=10.7V = 10.7 star (TYC 8378-64-1), with Teff_{eff} = 5948±745948\pm74 K, logg\log{g} = 4.3190.030+0.0204.319_{-0.030}^{+0.020} and [Fe/H] = 0.090.10+0.110.09_{-0.10}^{+0.11}, an inferred mass M_{*} = 1.1120.061+0.0551.112_{-0.061}^{+0.055} M_{\odot} and radius R_{*} = 1.2090.035+0.0471.209_{-0.035}^{+0.047} R_{\odot}. The planet has a radius RP_{P} = 1.3990.049+0.0691.399_{-0.049}^{+0.069} RJ_{J} and mass MP_{P} = 0.6790.038+0.0390.679_{-0.038}^{+0.039} MJ_{J}. The planet has an eccentricity consistent with zero and a semi-major axis aa = 0.052500.00097+0.000860.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0T_{0} = 2457066.72045±\pm0.00027 BJDTDB_{TDB} and P = 4.1662739±\pm0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq_{eq} = 137723+281377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.8170.054+0.0680.817_{-0.054}^{+0.068} ×\times 109^9 erg s1^{-1} cm2^{-2}, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next \sim1 Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V << 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.Comment: 20 pages, 13 figures, 7 tables, accepted for publication in MNRA

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    System description and first light-curves of HAT, an autonomous observatory for variability search

    Full text link
    Having been operational at Kitt Peak for more than a year, the prototype of the Hungarian Automated Telescope (HAT-1) has been used for all-sky variability search of the northern hemisphere. The small autonomous observatory is recording brightness of stars in the range of I~6--13m with a telephoto lens and its 9x9 degree field of view, yielding a data rate of ~10^6 photometric measurements per night. We give brief hardware and software description of the system, controlled by a single PC running RealTime Linux operating system. We overview site-specific details, and quantify the astrometric and photometric capabilities of HAT. As a demonstration of system performance we give a sample of 60 short period variables in a single selected field, all bright, with I < 13m, of which only 14 were known before. Depending on the observing strategy, search for extrasolar planet transits is also a feasible observing program. We conclude with a short discussion on future directions. Further information can be found at the HAT homepage: http://www-cfa.harvard.edu/~gbakos/HAT/Comment: Submitted to PASP, 18 pages, 8 figures. See http://www-cfa.harvard.edu/~gbakos/HAT/Publ/ for more information and hi-resolution figure

    The contribution of the major planet search surveys to EChO target selection

    Get PDF
    The EChO core science will be based on a three tier survey, each with increasing sensitivity, in order to study the population of exo-planets from super-Earths to Jupiter-like planets, in the very hot to temperate zones (temperatures of 300 K - 3000 K) of F to M-type host stars. To achieve a meaningful outcome an accurate selection of the target sample is needed. In this paper we analyse the targets, suitable for EChO observations, expected to result from a sample of present and forthcoming detection surveys. Exoplanets currently known are already sufficient to provide a large and diverse sample. However we expect the results from these surveys to increase the sample of smaller planets that will allow us to optimize the EChO sample selection.Comment: Submitted to Experimental Astronom

    Tracking control for a cascade perturbed control system using the active disturbance rejection paradigm

    Full text link
    In this paper the stability of a closed-loop cascade control system in the trajectory tracking task is addressed. The considered plant consists of underlying second-order fully actuated perturbed dynamics and the first order system which describes dynamics of the input. The main theoretical result presented in the paper concerns stability conditions formulated based on the Lyapunov analysis for the cascade control structure taking advantage of the active rejection disturbance approach. In particular, limitations imposed on a feasible set of an observer bandwidth are discussed. In order to illustrate characteristics of the closed-loop control system simulation results are presented. Furthermore, the controller is verified experimentally using a two-axis telescope mount. The obtained results confirm that the considered control strategy can be efficiently applied for mechanical systems when a high tracking precision is required.Comment: 17 pages, 8 figures, 2 table

    Remote Access Observatories in Low Earth Orbit -A Low-Cost Concept for a Small Scientific Spacecraft

    Get PDF
    In parallel with the evolution of large observatory spacecraft such as the Einstein, Copernicus, and IUE, and the yet-to-be-Iaunched Hubble Space Telescope and Gamma Ray Observatory, Increasingly large ground telescopes are in construction which will allow ground astronomy to compete favorably with elaborate and expensive space systems in the quest for new discoveries. Sometimes overlooked in this pursuit of new discoveries, with the limited observational time on the space Instruments, or the oversubscribed large ground Instruments, Is the recent development of smaller, low-cost robotic ground observatories designed for routine - but vital - collection of synoptic data. High-quality stellar observations are now being made by exploitation of new computer and detector technologies in unattended remote ground observatories, typically by modest aperture Instruments tailored to the Job. These Instruments operate in modes similar to those employed in the observatory spacecraft. Recent developments In the small satellite technology, some being reported at this conference, allow a reduced cost of payload delivery Into orbit and suggest that another look Is deserved at the 1960s\u27 concept of small astronomical satellites, which would be operable by simple command systems to conduct monitoring of variable, flare, and cataclysmic stars, perhaps limited only to precision filter photometry or simple Imaging In wavelengths not accessible from the ground. These would allow conduct of bread-and-butter astronomy at and accuracies wavelengths available only In space on objects Identified by the larger research Instruments, undertaking science too costly to pursue over long periods with multi-billion dollar systems. This paper will explore small spacecraft provided with low-cost attitude systems (LCAS) for stabilization, modest telescope optics, and low-power communications and spacecraft computer sub-systems which could perform autonomous celestial acquisitions and photometric data collection

    The Mass-Radius(-Rotation?) Relation for Low-Mass Stars

    Get PDF
    The fundamental properties of low-mass stars are not as well understood as those of their more massive counterparts. The best method for constraining these properties, especially masses and radii, is to study eclipsing binary systems, but only a small number of late-type (M0 or later) systems have been identified and well-characterized to date. We present the discovery and characterization of six new M dwarf eclipsing binary systems. The twelve stars in these eclipsing systems have masses spanning 0.38-0.59 Msun and orbital periods of 0.6--1.7 days, with typical uncertainties of ~0.3% in mass and 0.5--2.0% in radius. Combined with six known systems with high-precision measurements, our results reveal an intriguing trend in the low-mass regime. For stars with M=0.35-0.80 Msun, components in short-period binary systems (P<1 day; 12 stars) have radii which are inflated by up to 10% (mean=4.8+/-1.0%) with respect to evolutionary models for low-mass main-sequence stars, whereas components in longer-period systems (>1.5 days; 12 stars) tend to have smaller radii (mean=1.7+/-0.7%). This trend supports the hypothesis that short-period systems are inflated by the influence of the close companion, most likely because they are tidally locked into very high rotation speeds that enhance activity and inhibit convection. In summary, very close binary systems are not representative of typical M dwarfs, but our results for longer-period systems indicate that the evolutionary models are broadly valid in the M~0.35-0.80 Msun regime.Comment: Accepted to ApJ; 21 pages, 10 figures, 8 tables in emulateapj format. The full contents of Table 4 are included in the submission as tab4.tx
    corecore