359 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Automatic fault location in electrical distribution networks with distributed generation

    Get PDF
    Nowadays the electrical network is continuously evolving due to the increasing deployment of Information Technologies and the Distribution Energy Resources. This scenario affects directly to the quality of service in the electrical distribution networks. For this reason, the Power Quality is a key important concern to make the electrical network evolve towards a Smart Grid. Power quality is defined through three important focal points: availability, wave quality and commercial quality. The presence of the Distribution Energy Resources in the current electrical distribution network is showing a new scenario where the fault detection is more complex due to the flow current is in both directions. This thesis is focused in the analysis of several methods to locate a fault in electrical distribution network and also how the current communication standards can improve considerably this fault location. It is important to remark that the main contribution of this thesis is in the analysis of several propositions and algorithms to enhance the fault location in a distribution network using the current Intelligent Electronic Device with international standards such as IEC 61850. All of these algorithms have been focused to work in a mesh distribution networks. Another important contribution of this thesis is in the adaptive protection system in order to isolate correctly the fault in a ring system distribution. Although this proposition could be extended to a mesh network where the elements of the network can operate under a fault. Finally, the thesis concludes that the use of communication standards and Internet of Things with current developed Intelligent Electronic Devices technology can contribute significantly to enhance the current and future electrical network distribution.La xarxa elèctrica evoluciona contínuament a causa del creixent desplegament de les Tecnologies de la Informació i dels Recursos Energètics Distribuïts. Aquest escenari afecta directament a la qualitat de servei de les xarxes de distribució elèctrica. Per aquest motiu, el mantenir i millorar el nivell de qualitat d'energia és un punt clau per fer evolucionar la xarxa elèctrica cap a una xarxa Smart Grid. Aquesta qualitat de l'energia es defineix per medi de de tres punts importants: disponibilitat, qualitat d'ona i qualitat comercial. La presència dels Recursos Energètics Distribuïts mostra un nou escenari en què la detecció de defectes es complica afectant a la disponibilitat del servei. Aquesta tesi es centra principalment en l'anàlisi de diversos mètodes per localitzar un defecte a la xarxa de distribució elèctrica i també en com l'ús dels estàndards de comunicació actuals poden contribuir considerablement a la localització del defecte. És important remarcar que la principal contribució d'aquest document ha estat en l'anàlisi de diverses proposicions i algoritmes per millorar la localització de faltes en una xarxa de distribució utilitzant Dispositius Electrònics Intel·ligents amb estàndards internacionals com l'IEC 61850. Tots aquests algoritmes han estat definits per treballar en xarxes de distribució mallades. Una altra contribució important d'aquesta tesi es troba en el sistema de protecció adaptatiu per tal d'aïllar correctament el defecte en una distribució del sistema d'anell amb interruptors automàtics. Aquesta proposta es podria ampliar a una xarxa mallada. Finalment, la tesi conclou amb que l'ús d'estàndards de comunicació i l'Internet of Things en combinació amb Dispositius Electrònics Intel·ligents, desenvolupats actualment, poden contribuir significativament a millorar la distribució de la xarxa elèctrica actual i futura.Postprint (published version

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Reverse Engineering of Short Circuit Analyses

    Get PDF
    The electrical distribution system has evolved with embedded computer systems that can better manage the electrical fault that occurred around the feeders. Such random events can affect the reliability indices of overall systems. Computerized management system for distribution operation has been improving with the advanced sensing technologies. The general research question is here to articulate is the responsiveness for utility crew to pinpoint the exact location of a fault based on the SCADA fault indicators from pole-mounted feeder remote terminal units (FRTUs). This has been a tricky question because it relies on the information received from the sensors that can conclude fault with logic\u27s of over currents. The merit of this work can benefit at large the grid reliability because of time-saving in searching the exact location of a fault. The main contribution of this thesis is to utilize the 3-phase unbalanced power flow method to incrementally search for narrowing the localization of electrical short circuits. This is known as the reversal of the typical short circuit approach where a location of the fault is presumed. The 3 topological configurations of simulation studied in this thesis exhibit the typical radial configuration of a distribution feeder have been researched based on unidirectional and bidirectional power flow simulation. The exact fault location is carried in two steps. Firstly, a bisection search algorithm has been employed. Secondly, an incremental adjustment to match the simulated currents of fault with the measurements is conducted. Finally, the sensitivity analysis of a search can be improved with the proposed algorithm that leads to matching of telemetered and calculated values. The analysis of exact fault location is carried in unidirectional and bidirectional flow of power. Distributed energy resources (DER) such as residential PV at a household level as well the wind energy changes affect the protective relaying within a feeder as well as the reconfigurability of the switching sequences. Furthermost, the bidirectionality of power flow in an unbalanced manner would also be a challenging issue to deal with the power quality in automation. Finally, the simulation results based on unidirectional and bidirectional power flow are extensively discussed along with the future scope
    corecore