3,441 research outputs found

    Novel miniature MRI-compatible fiber-optic force sensor for cardiac catherization procedures

    Get PDF
    Proceedings of: 2010 IEEE International Conference on Robotics and Automation (ICRA'10), May 3-8, 2010, Anchorage (Alaska, USA)This paper presents the prototype design and development of a miniature MR-compatible fiber optic force sensor suitable for the detection of force during MR-guided cardiac catheterization. The working principle is based on light intensity modulation where a fiber optic cable interrogates a reflective surface at a predefined distance inside a catheter shaft. When a force is applied to the tip of the catheter, a force sensitive structure varies the distance and the orientation of the reflective surface with reference to the optical fiber. The visual feedback from the MRI scanner can be used to determine whether or not the catheter tip is normal or tangential to the tissue surface. In both cases the light is modulated accordingly and the axial or lateral force can be estimated. The sensor exhibits adequate linear response, having a good working range, very good resolution and good sensitivity in both axial and lateral force directions. In addition, the use of low-cost and MR-compatible materials for its development makes the sensor safe for use inside MRI environments.European Community's Seventh Framework Progra

    Photonic sensors

    Get PDF
    This invited featured paper offers a Doctrinal Conception of sensing using Light (SuL) as an “umbrella” in which any sensing approach using Light Sciences and Technologies can be easily included. The key requirements of a sensing system will be quickly introduced by using a bottom-up methodology. Thanks to this, it will be possible to get a general conception of a sensor using Light techniques and know some related issues, such as its main constituted parts and types. The case in which smartness is conferred to the device is also considered. A quick “flight” over 10 significant cases using different principles, techniques, and technologies to detect diverse measurands in various sector applications is offered to illustrate this general concept. After reading this paper, any sensing approach using Light Sciences and Technologies may be easily included under the umbrella: sensing using Light or photonic sensors (PS).This work has been supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (Grant PID2019-107270RB-C21 funded by MCIN/AEI /10.13039/501100011033) and also TeDFeS Project (grant RTC-2017-6321-1) co-funded by European FEDER funds ( as a way of making Europe)

    Sensing using light: a key area of sensors

    Get PDF
    This invited featured paper offers a Doctrinal Conception of sensing using Light (SuL) as an "umbrella" in which any sensing approach using Light Sciences and Technologies can be easily included. The key requirements of a sensing system will be quickly introduced by using a bottom-up methodology. Thanks to this, it will be possible to get a general conception of a sensor using Light techniques and know some related issues, such as its main constituted parts and types. The case in which smartness is conferred to the device is also considered. A quick "flight" over 10 significant cases using different principles, techniques, and technologies to detect diverse measurands in various sector applications is offered to illustrate this general concept. After reading this paper, any sensing approach using Light Sciences and Technologies may be easily included under the umbrella: sensing using Light or photonic sensors (PS).This work has been supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AIE/10.13039/501100011033) and also TeDFeS Project (RTC-2017-6321-1) co-funded by European FEDER funds

    Sensores de fibra ótica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica para aplicações biomédicas em soluções vestíveis e não intrusivas/ou invisíveis. Tendo em conta que se pretende que os dispositivos desenvolvidos não interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra ótica apresentam inúmeras vantagens quando comparados com os sensores eletrónicos convencionais, de entre várias, destacam-se: tamanho e peso reduzido, biocompatibilidade, segurança, imunidade a interferências eletromagnéticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestíveis com sensores de fibra ótica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parâmetros da marcha com base na análise da pressão exercida em várias zonas da palmilha. Ainda no âmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressão e forças de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsáveis pela ulceração dos pés em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temática relacionada com o aparecimento de úlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigação deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra ótica capaz de monitorizar a pressão em vários pontos de uma cadeira de rodas e não só aferir a pressão em cada ponto, mas monitorizar a postura do cadeirante e aconselhá-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrência desta patologia. Ainda dentro desta aplicação, foi publicado um outro trabalho onde o sensor não só monitoriza a pressão como também a temperatura em cada um dos pontos de análise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra ótica de plástico para monitorizar a postura corporal de um utilizador de uma cadeira de escritório. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensíveis embebidos em materiais impressos 3D. O sensor é composto por uma fibra ótica com uma FBG e o corpo do sensor por um material polimérico flexível, denominado “Flexible”. O sensor foi impresso numa impressora 3D e durante a sua impressão foi incorporada a fibra ótica. O sensor demonstrou ser altamente sensível e foi capaz de monitorizar frequência respiratória e cardíaca, tanto em soluções vestíveis (peito e pulso) como em soluções “invisíveis” (cadeira de escritório).Programa Doutoral em Engenharia Físic

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Dual modality optical coherence tomography : Technology development and biomedical applications

    Get PDF
    Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time. OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, interrogating additional tissue properties using OCT would improve the outcome of OCT’s clinical applications. In addition to morphological difference, pathological tissue such as cancer breast tissue usually possesses higher stiffness compared to the normal healthy tissue, which indicates a compelling reason for the specific combination of structural OCT imaging with stiffness assessment in the development of dual-modality OCT system for the characterization of the breast cancer diagnosis. This dissertation seeks to integrate the structural OCT imaging and the optical coherence elastography (OCE) for breast cancer tissue characterization. OCE is a functional extension of OCT. OCE measures the mechanical response (deformation, resonant frequency, elastic wave propagation) of biological tissues under external or internal mechanical stimulation and extracts the mechanical properties of tissue related to its pathological and physiological processes. Conventional OCE techniques (i.e., compression, surface acoustic wave, magnetomotive OCE) measure the strain field and the results of OCE measurement are different under different loading conditions. Inconsistency is observed between OCE characterization results from different measurement sessions. Therefore, a robust mechanical characterization is required for force/stress quantification. A quantitative optical coherence elastography (qOCE) that tracks both force and displacement is proposed and developed at NJIT. qOCE instrument is based on a fiber optic probe integrated with a Fabry-Perot force sensor and the miniature probe can be delivered to arbitrary locations within animal or human body. In this dissertation, the principle of qOCE technology is described. Experimental results are acquired to demonstrate the capability of qOCE in characterizing the elasticity of biological tissue. Moreover, a handheld optical instrument is developed to allow in vivo real-time OCE characterization based on an adaptive Doppler analysis algorithm to accurately track the motion of sample under compression. For the development of the dual modality OCT system, the structural OCT images exhibit additive and multiplicative noises that degrade the image quality. To suppress noise in OCT imaging, a noise adaptive wavelet thresholding (NAWT) algorithm is developed to remove the speckle noise in OCT images. NAWT algorithm characterizes the speckle noise in the wavelet domain adaptively and removes the speckle noise while preserving the sample structure. Furthermore, a novel denoising algorithm is also developed that adaptively eliminates the additive noise from the complex OCT using Doppler variation analysis

    Terahertz Pulse Detection Techniques and Imaging Applications

    Get PDF
    Recent years have witnessed successful developments of detection techniques of terahertz (THz) pulse radiation and its imaging applications such as security, medicine and environmental sensing, to name an important few. Progress of detection techniques has been made in many aspects, including detection sensitivity, real‐time detection, room‐temperature operation, detection bandwidth and dynamic range, spatial (wavefront) and temporal profiles and so on. New detection techniques utilizing cutting‐edge materials, sensors, systems and even novel detection mechanisms contribute to advances in terahertz pulse detection. While detection techniques continuously improve, terahertz pulsed imaging (TPI) also finds broad and intriguing applications. For instance, TPI has shown applications in nondestructive evaluation in pharmaceutics, biomedical characterization of tissues, medical diagnosis of cancers, identification of explosive hazards and examination of art and archeology. The chapter highlights recent progress of terahertz pulse detection techniques and imaging applications

    Design of an acoustically transparent pressure sensor for breast elastography

    Get PDF
    Breast cancer is the most commonly occurring cancer in women. Only in 2018 there were over 2 million new cases all over the world. The MURAB project, pursued at the University of Twente, has the aim to improving the breast biopsy procedure by reducing costs, patient discomfort and false negative rates. A 7-DOF KUKA robot arm steers an ultrasound transducer along a precise scanning trajectory to gather 3D volume image and stiffness values of the breast. Elasticity is the property of a body to be deformed and differs between tumors tissue and soft tissue. Elastography is a non-invasive technique in which the elasticity of a tissue is determined. The aim of this study is to design an acoustically transparent pressure sensor, mounted on the tip of the ultrasound probe, that can measure pressure differences across its surface during the scan, and assess elastographic measurements. The main idea is to use a pad of a characterized material and sequentially ultrasound images able to visualize the section of the pad and evaluate its deformation during time. The transmission of ultrasound waves into a solid depends on the mechanical characteristics of the material and on its physic state. In this work the relations between the acoustic properties and the mechanical behavior of an acoustically transparent pad are studied and evaluated

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    corecore