3,569 research outputs found

    The explicit dynamic model and inertial parameters of the PUMA 560 arm

    Get PDF
    To provide COSMOS, a dynamic model based manipulator control system, with an improved dynamic model, a PUMA 560 arm was disassembled; the inertial properties of the individual links were measured; and an explicit model incorporating all of the non-zero measured parameters was derived. The explicit model of the PUMA arm has been obtained with a derivation procedure comprised of several heuristic rules for simplification. A simplified model, abbreviated from the full explicit model with a 1% significance criterion, can be evaluated with 805 calculations, one fifth the number required by the recursive Newton-Euler method. The procedure used to derive the model is laid out; the measured inertial parameters are presented, and the model is included in an appendix

    A Distributed System for Robot Manipulator Control

    Get PDF
    This is the final report representing three years of work under the current grant. This work was directed to the development of a distributed computer architecture to function as a force and motion server to a robot system. In the course of this work we developed a compliant contact sensor to provide for transitions between position and force control; we have developed an end-effector capable of securing a stable grasp on an object and a theory of grasping; we have built a controller which minimizes control delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz; we have developed parallel kinematics algorithms for the controller; we have developed a consistent approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have developed a symbolic simplification software package to generate the dynamics equations of a manipulator such that the calculations may be split between background and foreground

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations

    A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism

    Get PDF
    This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    An application of lyapunov stability analysis to improve the performance of NARMAX models

    Get PDF
    Previously we presented a novel approach to program a robot controller based on system identification and robot training techniques. The proposed method works in two stages: first, the programmer demonstrates the desired behaviour to the robot by driving it manually in the target environment. During this run, the sensory perception and the desired velocity commands of the robot are logged. Having thus obtained training data we model the relationship between sensory readings and the motor commands of the robot using ARMAX/NARMAX models and system identification techniques. These produce linear or non-linear polynomials which can be formally analysed, as well as used in place of “traditional robot” control code. In this paper we focus our attention on how the mathematical analysis of NARMAX models can be used to understand the robot’s control actions, to formulate hypotheses and to improve the robot’s behaviour. One main objective behind this approach is to avoid trial-and-error refinement of robot code. Instead, we seek to obtain a reliable design process, where program design decisions are based on the mathematical analysis of the model describing how the robot interacts with its environment to achieve the desired behaviour. We demonstrate this procedure through the analysis of a particular task in mobile robotics: door traversal

    ARTMAP-FTR: A Neural Network for Object Recognition Through Sonar on a Mobile Robot

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    Geometric Adaptive Control for a Quadrotor UAV with Wind Disturbance Rejection

    Full text link
    This paper presents a geometric adaptive control scheme for a quadrotor unmanned aerial vehicle, where the effects of unknown, unstructured disturbances are mitigated by a multilayer neural network that is adjusted online. The stability of the proposed controller is analyzed with Lyapunov stability theory on the special Euclidean group, and it is shown that the tracking errors are uniformly ultimately bounded with an ultimate bound that can be abridged arbitrarily. A mathematical model of wind disturbance on the quadrotor dynamics is presented, and it is shown that the proposed adaptive controller is capable of rejecting the effects of wind disturbances successfully. These are illustrated by numerical examples

    A Robotic Neuro-Musculoskeletal Simulator for Spine Research

    Get PDF
    An influential conceptual framework advanced by Panjabi represents the living spine as a complex neuromusculoskeletal system whose biomechanical functioning is rather finely dependent upon the interactions among and between three principal subsystems: the passive musculoskeletal subsystem (osteoligamentous spine plus passive mechanical contributions of the muscles), the active musculoskeletal subsystem (muscles and tendons), and the neural and feedback subsystem (neural control centers and feedback elements such as mechanoreceptors located in the soft tissues) [1]. The interplay between subsystems readily encourages thought experiments of how pathologic changes in one subsystem might influence another--for example, prompting one to speculate how painful arthritic changes in the facet joints might affect the neuromuscular control of spinal movement. To answer clinical questions regarding the interplay between these subsystems the proper experimental tools and techniques are required. Traditional spine biomechanical experiments are able to provide comprehensive characterization of the structural properties of the osteoligamentous spine. However, these technologies do not incorporate a simulated neural feedback from neural elements, such as mechanoreceptors and nociceptors, into the control loop. Doing so enables the study of how this feedback--including pain-related--alters spinal loading and motion patterns. The first such development of this technology was successfully completed in this study and constitutes a Neuro-Musculoskeletal Simulator. A Neuro-Musculoskeletal Simulator has the potential to reduce the gap between bench and bedside by creating a new paradigm in estimating the outcome of spine pathologies or surgeries. The traditional paradigm is unable to estimate pain and is also unable to determine how the treatment, combined with the natural pain avoidance of the patient, would transfer the load to other structures and potentially increase the risk for other problems. The novel Neuro-Musculo

    Solving robotic kinematic problems : singularities and inverse kinematics

    Get PDF
    Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction. (b) Unbounded joint velocities are required to generate finite linear and angular velocities. Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them. - Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form. The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them. With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra. To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.La cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos
    corecore