36 research outputs found

    Identification of a temperature dependent FitzHugh-Nagumo model for the Belousov-Zhabotinskii reaction

    Get PDF
    This paper describes the identification of a temperature dependent FitzHugh-Nagumo model directly from experimental observations with controlled inputs. By studying the steady states and the trajectory of the phase of the variables, the stability of the model is analysed and a rule to generate oscillation waves is proposed. The dependence of the oscillation frequency and propagation speed on the model parameters is then investigated to seek the appropriate control variables, which then become functions of temperature in the identified model. The results show that the proposed approach can provide a good representation of the dynamics of the oscillatory behaviour of a BZ reaction

    The identification of cellular automata

    Get PDF
    Although cellular automata have been widely studied as a class of the spatio temporal systems, very few investigators have studied how to identify the CA rules given observations of the patterns. A solution using a polynomial realization to describe the CA rule is reviewed in the present study based on the application of an orthogonal least squares algorithm. Three new neighbourhood detection methods are then reviewed as important preliminary analysis procedures to reduce the complexity of the estimation. The identification of excitable media is discussed using simulation examples and real data sets and a new method for the identification of hybrid CA is introduced

    Spatio-temporal modelling of wave formation in an excitable chemical medium based on a revised FitzHugh-Nagumo model

    Get PDF
    The wavefront profile and the propagation velocity of waves in an experimentally observed Belousov-Zhabotinskii reaction are analyzed and a revised FitzHumgh-Nagumo(FHN) model of these systems is identified. The ratio between the excitation period and the recovery period, for a solitary wave are studied, and included within the model. Averaged travelling velocities at different spatial positions are shown to be consistent under the same experimental conditions. The relationship between the propagation velocity and the curvature of the wavefront are also studied to deduce the diffusion coefficient in the model, which is a function of the curvature of the wavefront and not a constant. The application of the identified model is demonstrated on real experimental data and validated using multi-step ahead predictions

    Identification of excitable media using a scalar coupled map lattice model

    Get PDF
    The identification problem for excitable media is investigated in this paper. A new scalar coupled map lattice (SCML) model is introduced and the orthogonal least squares algorithm is employed to determinate the structure of the SCML model and to estimate the associated parameters. A simulated pattern and a pattern observed directly from a real Belousov-Zhabotinsky reaction are identified. The identified SCML models are shown to possess almost the same local dynamics as the original systems and are able to provide good long term predictions

    Identification of the transition rule in a modified cellular automata model: the case of dendritic NH4Br crystal growth

    Get PDF
    A method of identifying the transition rule, encapsulated in a modified cellular automata (CA) model, is demonstrated using experimentally observed evolution of dendritic crystal growth patterns in NH4Br crystals. The influence of the factors, such as experimental set-up and image pre-processing, colour and size calibrations, on the method of identification are discussed in detail. A noise reduction parameter and the diffusion velocity of the crystal boundary are also considered. The results show that the proposed method can in principle provide a good representation of the dendritic growth anisotropy of any system

    A cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighbourhood

    Get PDF
    An important step in understanding crystal growth patterns involves simulation of the growth processes using mathematical models. In this paper some commonly used models in this area are reviewed, and a new simulation model of dendritic crystal growth based on the Moore and von Neumann neighbourhoods in cellular automata models are introduced. Simulation examples are employed to find ap- propriate parameter configurations to generate dendritic crystal growth patterns. Based on these new modelling results the relationship between tip growth speed and the parameters of the model are investigated

    Identification of a spatio-temporal model of crystal growth based on boundary curvature

    Get PDF
    A new method of identifying the spatio-temporal transition rule of crystal growth is introduced based on the connection between growth kinetics and dentritic morphology. Using a modified three-point-method, curvatures of the considered crystal branch are calculated and curvature direction is used to measure growth velocity. A polynomial model is then produced based on a curvature-velocity relationship to represent the spatio-temporal growth process. A very simple simulation example is used initially to clearly explain the methodology. The results of identifying a model from a real crystal growth experiment show that the proposed method can produce a good representation of crystal growth

    Models of self-organization in biological development

    Get PDF
    Bibliography: p. 297-320.In this thesis we thus wish to consider the concept of self-organization as an overall paradigm within which various theoretical approaches to the study of development may be described and evaluated. In the process, an attempt is made to give a fair and reasonably comprehensive overview of leading modelling approaches in developmental biology, with particular reference to self-organization. The work proceeds from a physical or mathematical perspective, but not unduly so - the major mathematical derivations and results are relegated to appendices - and attempts to fill a perceived gap in the extant review literature, in its breadth and attempted impartiality of scope. A characteristic of the present account is its markedly interdisciplinary approach: it seeks to place self-organization models that have been proposed for biological pattern formation and morphogenesis both within the necessary experimentally-derived biological framework, and in the wider physical context of self-organization and the mathematical techniques that may be employed in its study. Hence the thesis begins with appropriate introductory chapters to provide the necessary background, before proceeding to a discussion of the models themselves. It should be noted that the work is structured so as to be read sequentially, from beginning to end; and that the chapters in the main text were designed to be understood essentially independently of the appendices, although frequent references to the latter are given. In view of the vastness of the available information and literature on developmental biology, a working knowledge of embryological principles must be assumed. Consequently, rather than attempting a comprehensive introduction to experimental embryology, chapter 2 presents just a few biological preliminaries, to 'set the scene', outlining some of the major issues that we are dealing with, and sketching an indication of the current status of knowledge and research on development. The chapter is aimed at furnishing the necessary biological, experimental background, in the light of which the rest of the thesis should be read, and which should indeed underpin and motivate any theoretical discussions. We encounter the different hierarchical levels of description in this chapter, as well as some of the model systems whose experimental study has proved most fruitful, some of the concepts of experimental embryology, and a brief reference to some questions that will not be addressed in this work. With chapter 3, we temporarily move away from developmental biology, and consider the wider physical and mathematical concepts related to the study of self-organization. Here we encounter physical and chemical examples of spontaneous structure formation, thermodynamic considerations, and different approaches to the description of complexity. Mathematical approaches to the dynamical study of self-organization are also introduced, with specific reference to reaction-diffusion equations, and we consider some possible chemical and biochemical realizations of self-organizing kinetics. The chapter may be read in conjunction with appendix A, which gives a somewhat more in-depth study of reaction-diffusion equations, their analysis and properties, as an example of the approach to the analysis of self-organizing dynamical systems and mathematically-formulated models. Appendix B contains a more detailed discussion of the Belousov-Zhabotinskii reaction, which provides a vivid chemical paradigm for the concepts of symmetry-breaking and self-organization. Chapter 3 concludes with a brief discussion of a model biological system, the cellular slime mould, which displays rudimentary development and has thus proved amenable to detailed study and modelling. The following two chapters form the core of the thesis, as they contain discussions of the detailed application of theoretical concepts and models, largely based on self-organization, to various developmental situations. We encounter a diversity of models which has arisen largely in the last quarter century, each of which attempts to account for some aspect of biological pattern formation and morphogenesis; an aim of the discussion is to assess the extent of the underlying unity of these models in terms of the self-organization paradigm. In chapter 4 chemical pre-patterns and positional information are considered, without the overt involvement of cells in the patterning. In chapter 5, on the other hand, cellular interactions and activities are explicitly taken into account; this chapter should be read together with appendix C, which contains a brief introduction to the mathematical formulation and analysis of some of the models discussed. The penultimate chapter, 6, considers two other approaches to the study of development; one of these has faded away, while the other is still apparently in the ascendant. The assumptions underlying catastrophe theory, the value of its applications to developmental biology and the reasons for its decline in popularity, are considered. Lastly, discrete approaches, including the recently fashionable cellular automata, are dealt with, and the possible roles of rule-based interactions, such as of the so-called L-systems, and of fractals and chaos are evaluated. Chapter 7 then concludes the thesis with a brief assessment of the value of the self-organization concept to the study of biological development
    corecore