1,729 research outputs found

    Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: A group ICA study.

    Get PDF
    Although individuals at clinical high risk (CHR) for psychosis exhibit a psychosis-risk syndrome involving attenuated forms of the positive symptoms typical of schizophrenia (SZ), it remains unclear whether their resting-state brain intrinsic functional networks (INs) show attenuated or qualitatively distinct patterns of functional dysconnectivity relative to SZ patients. Based on resting-state functional magnetic imaging data from 70 healthy controls (HCs), 53 CHR individuals (among which 41 subjects were antipsychotic medication-naive), and 58 early illness SZ (ESZ) patients (among which 53 patients took antipsychotic medication) within five years of illness onset, we estimated subject-specific INs using a novel group information guided independent component analysis (GIG-ICA) and investigated group differences in INs. We found that when compared to HCs, both CHR and ESZ groups showed significant differences, primarily in default mode, salience, auditory-related, visuospatial, sensory-motor, and parietal INs. Our findings suggest that widespread INs were diversely impacted. More than 25% of voxels in the identified significant discriminative regions (obtained using all 19 possible changing patterns excepting the no-difference pattern) from six of the 15 interrogated INs exhibited monotonically decreasing Z-scores (in INs) from the HC to CHR to ESZ, and the related regions included the left lingual gyrus of two vision-related networks, the right postcentral cortex of the visuospatial network, the left thalamus region of the salience network, the left calcarine region of the fronto-occipital network and fronto-parieto-occipital network. Compared to HCs and CHR individuals, ESZ patients showed both increasing and decreasing connectivity, mainly hypo-connectivity involving 15% of the altered voxels from four INs. The left supplementary motor area from the sensory-motor network and the right inferior occipital gyrus in the vision-related network showed a common abnormality in CHR and ESZ groups. Some brain regions also showed a CHR-unique alteration (primarily the CHR-increasing connectivity). In summary, CHR individuals generally showed intermediate connectivity between HCs and ESZ patients across multiple INs, suggesting that some dysconnectivity patterns evident in ESZ predate psychosis in attenuated form during the psychosis risk stage. Hence, these connectivity measures may serve as possible biomarkers to predict schizophrenia progression

    The Electrophysiology of Resting State fMRI Networks

    Get PDF
    Traditional research in neuroscience has studied the topography of specific brain functions largely by presenting stimuli or imposing tasks and measuring evoked brain activity. This paradigm has dominated neuroscience for 50 years. Recently, investigations of brain activity in the resting state, most frequently using functional magnetic resonance imaging (fMRI), have revealed spontaneous correlations within widely distributed brain regions known as resting state networks (RSNs). Variability in RSNs across individuals has found to systematically relate to numerous diseases as well as differences in cognitive performance within specific domains. However, the relationship between spontaneous fMRI activity and the underlying neurophysiology is not well understood. This thesis aims to combine invasive electrophysiology and resting state fMRI in human subjects to better understand the nature of spontaneous brain activity. First, we establish an approach to precisely coregister intra-cranial electrodes to fMRI data (Chapter 2). We then created a novel machine learning approach to define resting state networks in individual subjects (Chapter 3). This approach is validated with cortical stimulation in clinical electrocorticography (ECoG) patients (Chapter 4). Spontaneous ECoG data are then analyzed with respect to fMRI time-series and fMRI-defined RSNs in order to illustrate novel ECoG correlates of fMRI for both local field potentials and band-limited power (BLP) envelopes (Chapter 5). In Chapter 6, we show that the spectral specificity of these resting state ECoG correlates link classic brain rhythms with large-scale functional domains. Finally, in Chapter 7 we show that the frequencies and topographies of spontaneous ECoG correlations specifically recapitulate the spectral and spatial structure of task responses within individual subjects

    Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis

    Get PDF
    Research on an early detection of Mild Cognitive Impairment (MCI), a prodromal stage of Alzheimer’s Disease (AD), with resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been of great interest for the last decade. Witnessed by recent studies, functional connectivity is a useful concept in extracting brain network features and finding biomarkers for brain disease diagnosis. However, it still remains challenging for the estimation of functional connectivity from rs-fMRI due to the inevitable high dimensional problem. In order to tackle this problem, we utilize a group sparse representation along with a structural equation model. Unlike the conventional group sparse representation method that does not explicitly consider class-label information, which can help enhance the diagnostic performance, in this paper, we propose a novel supervised discriminative group sparse representation method by penalizing a large within-class variance and a small between-class variance of connectivity coefficients. Thanks to the newly devised penalization terms, we can learn connectivity coefficients that are similar within the same class and distinct between classes, thus helping enhance the diagnostic accuracy. The proposed method also allows the learned common network structure to preserve the network specific and label-related characteristics. In our experiments on the rs-fMRI data of 37 subjects (12 MCI; 25 healthy normal control) with a cross-validation technique, we demonstrated the validity and effectiveness of the proposed method, showing the diagnostic accuracy of 89.19% and the sensitivity of 0.9167

    Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

    Full text link
    Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and SNP data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-driven neuroimaging phenotypes

    Analyzing Heterogeneity In Neuroimaging With Probabilistic Multivariate Clustering Approaches

    Get PDF
    Automated quantitative neuroimaging analysis methods have been crucial in elucidating normal and pathological brain structure and function, and in building in vivo markers of disease and its progression. Commonly used methods can identify and precisely quantify subtle and spatially complex imaging patterns of brain change associated with brain diseases. However, the overarching premise of these methods is that the disease group is a homogeneous entity resulting from a single, unifying pathophysiological process that has a single imaging signature. This assumption ignores ample evidence for the heterogeneous nature of neurodegenerative diseases and neuropsychiatric disorders, resulting in incomplete or misleading descriptions. Accurate characterization of heterogeneity is important for deepening our understanding of neurobiological processes, thus leading to improved disease diagnosis and prognosis. In this thesis, we leveraged machine learning techniques to develop novel tools that can analyze the heterogeneity in both cross-sectional and longitudinal neuroimaging studies. Specifically, we developed a semi-supervised clustering method for characterizing heterogeneity in cross-sectional group comparison studies, where normal and patient populations are modeled as high-dimensional point distributions, and heterogeneous disease effects are captured by estimating multiple transformations that align the two distributions, while accounting for the effect of nuisance covariates. Moreover, toward dissecting the heterogeneity in longitudinal cohorts, we proposed a method which simultaneously fits multiple population longitudinal multivariate trajectories and clusters subjects into subgroups. Longitudinal trajectories are modeled using spatiotemporally regularized cubic splines, while clustering is performed by assigning subjects to the subgroup whose population trajectory best fits their data. The proposed tools were extensively validated using synthetic data. Importantly, they were applied to study the heterogeneity in large clinical neuroimaging cohorts. We identified four disease subtypes with distinct imaging signatures using data from Alzheimer’s Disease Neuroimaging Initiative, and revealed two subgroups with different longitudinal patterns using data from Baltimore Longitudinal Study on Aging. Critically, we were able to further characterize the subgroups in each of the studies by performing statistical analyses evaluating subgroup differences with additional information such as neurocognitive data. Our results demonstrate the strength of the developed methods, and may pave the road for a broader understanding of the complexity of brain aging and Alzheimer’s disease
    • …
    corecore