1,248 research outputs found

    Identification of Consistent Standard Dynamic Parameters of Industrial Robots

    Get PDF
    International audienceThe dynamics of each link and joint of a robot is characterized by a set of 14 standard dynamic parameters (6 for the inertia matrix, 3 for the centre of mass coordinates, 1 for the mass and 4 for the drive chain inertia and friction). It is known that only a subset of the standard parameters, called the base parameters, are identifiable using the inverse dynamic model and the linear least squares techniques. Moreover, some of the base parameters are poorly identified because they poorly affect the joint torque. Thus they can be eliminated, leading to a new subset of dynamic parameters called the essential parameters. However, the identified values of the base or the essential parameters may be physically inconsistent regarding to the loss of the positive definiteness of the robot inertia matrix. Several methods have been developed in the past to verify the physical consistency of the identified parameters but they are complicated , time consuming and lead to non-optimal parameters. To overcome these drawbacks, a new method calculates a set of optimal standard dynamic parameters which are the closest to a priori consistent dynamic parameters obtained through CAD data given by the robot manufacturers. This is a straightforward method which is based on using the SVD and the Cholesky factorization and the linear least squares techniques. The new procedure is experimentally validated on an industrial 6 degrees of freedom Stäubli TX-40 robot

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    The Sum of Its Parts: Visual Part Segmentation for Inertial Parameter Identification of Manipulated Objects

    Full text link
    To operate safely and efficiently alongside human workers, collaborative robots (cobots) require the ability to quickly understand the dynamics of manipulated objects. However, traditional methods for estimating the full set of inertial parameters rely on motions that are necessarily fast and unsafe (to achieve a sufficient signal-to-noise ratio). In this work, we take an alternative approach: by combining visual and force-torque measurements, we develop an inertial parameter identification algorithm that requires slow or 'stop-and-go' motions only, and hence is ideally tailored for use around humans. Our technique, called Homogeneous Part Segmentation (HPS), leverages the observation that man-made objects are often composed of distinct, homogeneous parts. We combine a surface-based point clustering method with a volumetric shape segmentation algorithm to quickly produce a part-level segmentation of a manipulated object; the segmented representation is then used by HPS to accurately estimate the object's inertial parameters. To benchmark our algorithm, we create and utilize a novel dataset consisting of realistic meshes, segmented point clouds, and inertial parameters for 20 common workshop tools. Finally, we demonstrate the real-world performance and accuracy of HPS by performing an intricate 'hammer balancing act' autonomously and online with a low-cost collaborative robotic arm. Our code and dataset are open source and freely available.Comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA'23), London, UK, May 29 - June 2, 202

    Derivative-free online learning of inverse dynamics models

    Full text link
    This paper discusses online algorithms for inverse dynamics modelling in robotics. Several model classes including rigid body dynamics (RBD) models, data-driven models and semiparametric models (which are a combination of the previous two classes) are placed in a common framework. While model classes used in the literature typically exploit joint velocities and accelerations, which need to be approximated resorting to numerical differentiation schemes, in this paper a new `derivative-free' framework is proposed that does not require this preprocessing step. An extensive experimental study with real data from the right arm of the iCub robot is presented, comparing different model classes and estimation procedures, showing that the proposed `derivative-free' methods outperform existing methodologies.Comment: 14 pages, 11 figure

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    Free-Floating Robot Inertial Parameter Identification Towards in Orbit Servicing

    Get PDF
    This master thesis work focuses on the inertial parameter identification of a space robot by exploiting an object of known inertial properties placed at the end-effector of the robotic arm and angular momentum conservation. On-orbit servicing tasks are becoming every day more crucial due to the exponential growth experienced by the space sector in the recent years. The accurate knowledge of the inertial parameters of a servicing platform is fundamental to accomplish complex missions which require high precision. In this context the method developed in this research work, which was carried out at the DLR's Institute of Robotics and Mechatronics in Oberpfaffenhofen (Germany), will extend the already well-covered topic of space manipulators in-orbit identification with algorithms tailored for platforms that do not have reaction wheels on board (e.g. ISS Astrobees). Besides validating the method with offline simulations, tests were performed for a freefloating robot with a 7 degrees of freedom arm on DLR's OOS-SIM experimental facility, providing an onground validation in a close to representative environment. The identification results show that the full dynamic model of the free-floating robot can be identified with the known load at its end-effector, giving comparable results to those in the literature, ready to be used in a model-based control framework

    Multiple Integrated Navigation Sensors for Improving Occupancy Grid FastSLAM

    Get PDF
    An autonomous vehicle must accurately observe its location within the environment to interact with objects and accomplish its mission. When its environment is unknown, the vehicle must construct a map detailing its surroundings while using it to maintain an accurate location. Such a vehicle is faced with the circularly defined Simultaneous Localization and Mapping (SLAM) problem. However difficult, SLAM is a critical component of autonomous vehicle exploration with applications to search and rescue. To current knowledge, this research presents the first SLAM solution to integrate stereo cameras, inertial measurements, and vehicle odometry into a Multiple Integrated Navigation Sensor (MINS) path. The implementation combines the MINS path with LIDAR to observe and map the environment using the FastSLAM algorithm. In real-world tests, a mobile ground vehicle equipped with these sensors completed a 140 meter loop around indoor hallways. This SLAM solution produces a path that closes the loop and remains within 1 meter of truth, reducing the error 92% from an image-inertial navigation system and 79% from odometry FastSLAM
    • …
    corecore