6,410 research outputs found

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Characterization of protein interactions by mass spectrometry and bioinformatics

    Get PDF

    Mining Biological Networks towards Protein complex Detection and Gene-Disease Association

    Get PDF
    Large amounts of biological data are continuously generated nowadays, thanks to the advancements of high-throughput experimental techniques. Mining valuable knowledge from such data still motivates the design of suitable computational methods, to complement the experimental work which is often bound by considerable time and cost requirements. Protein complexes or groups of interacting proteins, are key players in most cellular events. The identification of complexes not only allows to better understand normal biological processes but also to uncover Disease-triggering malfunctions. Ultimately, findings in this research branch can highly enhance the design of effective medical treatments. The aim of this research is to detect protein complexes in protein-protein interaction networks and to associate the detected entities to diseases. The work is divided into three main objectives: first, develop a suitable method for the identification of protein complexes in static interaction networks; second, model the dynamic aspect of protein interaction networks and detect complexes accordingly; and third, design a learning model to link proteins, and subsequently protein complexes, to diseases. In response to these objectives, we present, ProRank+, a novel complex-detection approach based on a ranking algorithm and a merging procedure. Then, we introduce DyCluster, which uses gene expression data, to model the dynamics of the interaction networks, and we adapt the detection algorithm accordingly. Finally, we integrate network topology attributes and several biological features of proteins to form a classification model for gene-disease association. The reliability of the proposed methods is supported by various experimental studies conducted to compare them with existing approaches. Pro Rank+ detects more protein complexes than other state-of-the-art methods. DyCluster goes a step further and achieves a better performance than similar techniques. Then, our learning model shows that combining topological and biological features can greatly enhance the gene-disease association process. Finally, we present a comprehensive case study of breast cancer in which we pinpoint disease genes using our learning model; subsequently, we detect favorable groupings of those genes in a protein interaction network using the Pro-rank+ algorithm

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape

    Proteomics-Based Systems Biology Modeling of Bovine Germinal Vesicle Stage Oocyte and Cumulus Cell Interaction

    Get PDF
    BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level
    • …
    corecore