10 research outputs found

    Detection of hard faults in combinational logic circuits

    Get PDF
    ABSTRACT: Previous Work in identifying hard to test faults (HFs) -- The effect of reconvergent fanout and redundancy -- Testability measures (TMs)Using of ATPGs to detect HFs -- Previous use of cost in Testability analysis -- Review of automatic test pattern generation (ATPG) -- Fault modelling -- Single versus multiple path sensitization -- The four ATPG phases of deterministic gate level test generation -- Random test pattern generation and hybrid methods -- Review of the fan algorithm -- Backtrack reduction methods and the importance of heuristics -- Mixed graph -- binary decision diagram (GBDD) circuit model -- A review of graph techniques -- A review of binary decisions diagrams (BDDs) techniques -- gBDD -- graph binary decision diagrams -- Detection of hard faults using HUB -- Introduction to budgetary constraints -- The HUB algorithm -- Important HUB attributes -- Circuits characteristics of used for results -- Comparison of gBDD -- ATPG related results -- Fault simulation related results -- Hard fault detection

    Test and Testability of Asynchronous Circuits

    Full text link
    The ever-increasing transistor shrinkage and higher clock frequencies are causing serious clock distribution, power management, and reliability issues. Asynchronous design is predicted to have a significant role in tackling these challenges because of its distributed control mechanism and on-demand, rather than continuous, switching activity. Null Convention Logic (NCL) is a robust and low-power asynchronous paradigm that introduces new challenges to test and testability algorithms because 1) the lack of deterministic timing in NCL complicates the management of test timing, 2) all NCL gates are state-holding and even simple combinational circuits show sequential behaviour, and 3) stuck-at faults on gate internal feedback (GIF) of NCL gates do not always cause an incorrect output and therefore are undetectable by automatic test pattern generation (ATPG) algorithms. Existing test methods for NCL use clocked hardware to control the timing of test. Such test hardware could introduce metastability issues into otherwise highly robust NCL devices. Also, existing test techniques for NCL handle the high-statefulness of NCL circuits by excessive incorporation of test hardware which imposes additional area, propagation delay and power consumption. This work, first, proposes a clockless self-timed ATPG that detects all faults on the gate inputs and a share of the GIF faults with no added design for test (DFT). Then, the efficacy of quiescent current (IDDQ) test for detecting GIF faults undetectable by a DFT-less ATPG is investigated. Finally, asynchronous test hardware, including test points, a scan cell, and an interleaved scan architecture, is proposed for NCL-based circuits. To the extent of our knowledge, this is the first work that develops clockless, self-timed test techniques for NCL while minimising the need for DFT, and also the first work conducted on IDDQ test of NCL. The proposed methods are applied to multiple NCL circuits with up to 2,633 NCL gates (10,000 CMOS Boolean gates), in 180 and 45 nm technologies and show average fault coverage of 88.98% for ATPG alone, 98.52% including IDDQ test, and 99.28% when incorporating test hardware. Given that this fault coverage includes detection of GIF faults, our work has 13% higher fault coverage than previous work. Also, because our proposed clockless test hardware eliminates the need for double-latching, it reduces the average area and delay overhead of previous studies by 32% and 50%, respectively

    Automatic test pattern generation for asynchronous circuits

    Get PDF
    The testability of integrated circuits becomes worse with transistor dimensions reaching nanometer scales. Testing, the process of ensuring that circuits are fabricated without defects, becomes inevitably part of the design process; a technique called design for test (DFT). Asynchronous circuits have a number of desirable properties making them suitable for the challenges posed by modern technologies, but are severely limited by the unavailability of EDA tools for DFT and automatic test-pattern generation (ATPG). This thesis is motivated towards developing test generation methodologies for asynchronous circuits. In total four methods were developed which are aimed at two different fault models: stuck-at faults at the basic logic gate level and transistor-level faults. The methods were evaluated using a set of benchmark circuits and compared favorably to previously published work. First, ABALLAST is a partial-scan DFT method adapting the well-known BALLAST technique for asynchronous circuits where balanced structures are used to guide the selection of the state-holding elements that will be scanned. The test inputs are automatically provided by a novel test pattern generator, which uses time frame unrolling to deal with the remaining, non-scanned sequential C-elements. The second method, called AGLOB, uses algorithms from strongly-connected components in graph graph theory as a method for finding the optimal position of breaking the loops in the asynchronous circuit and adding scan registers. The corresponding ATPG method converts cyclic circuits into acyclic for which standard tools can provide test patterns. These patterns are then automatically converted for use in the original cyclic circuits. The third method, ASCP, employs a new cycle enumeration method to find the loops present in a circuit. Enumerated cycles are then processed using an efficient set covering heuristic to select the scan elements for the circuit to be tested.Applying these methods to the benchmark circuits shows an improvement in fault coverage compared to previous work, which, for some circuits, was substantial. As no single method consistently outperforms the others in all benchmarks, they are all valuable as a designer’s suite of tools for testing. Moreover, since they are all scan-based, they are compatible and thus can be simultaneously used in different parts of a larger circuit. In the final method, ATRANTE, the main motivation of developing ATPG is supplemented by transistor level test generation. It is developed for asynchronous circuits designed using a State Transition Graph (STG) as their specification. The transistor-level circuit faults are efficiently mapped onto faults that modify the original STG. For each potential STG fault, the ATPG tool provides a sequence of test vectors that expose the difference in behavior to the output ports. The fault coverage obtained was 52-72 % higher than the coverage obtained using the gate level tests. Overall, four different design for test (DFT) methods for automatic test pattern generation (ATPG) for asynchronous circuits at both gate and transistor level were introduced in this thesis. A circuit extraction method for representing the asynchronous circuits at a higher level of abstraction was also implemented. Developing new methods for the test generation of asynchronous circuits in this thesis facilitates the test generation for asynchronous designs using the CAD tools available for testing the synchronous designs. Lessons learned and the research questions raised due to this work will impact the future work to probe the possibilities of developing robust CAD tools for testing the future asynchronous designs

    New FPGA design tools and architectures

    Get PDF

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    University of Nebraska at Omaha 2019-2020 Course Catalog

    Get PDF
    Located in one of America’s best cities to live, work and learn, the University of Nebraska at Omaha (UNO) is Nebraska’s premier metropolitan university. With more than 15,000 students enrolled in 200-plus programs of study, UNO is recognized nationally for its online education, graduate education, military friendliness, and community engagement efforts. Founded in 1908, UNO has served learners of all backgrounds for more than 100 years and is dedicated to another century of excellence both in the classroom and in the communit

    University of Nebraska at Omaha 2020-2021 Course Catalog

    Get PDF
    Located in one of America’s best cities to live, work and learn, the University of Nebraska at Omaha (UNO) is Nebraska’s premier metropolitan university. With more than 15,000 students enrolled in 200-plus programs of study, UNO is recognized nationally for its online education, graduate education, military friendliness, and community engagement efforts. Founded in 1908, UNO has served learners of all backgrounds for more than 100 years and is dedicated to another century of excellence both in the classroom and in the communit

    2021-2022 University of Nebraska at Omaha Catalog

    Get PDF
    Located in one of America’s best cities to live, work and learn, the University of Nebraska at Omaha (UNO) is Nebraska’s premier metropolitan university. With more than 15,000 students enrolled in 200-plus programs of study, UNO is recognized nationally for its online education, graduate education, military friendliness, and community engagement efforts. Founded in 1908, UNO has served learners of all backgrounds for more than 100 years and is dedicated to another century of excellence both in the classroom and in the communit
    corecore