18,201 research outputs found

    Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics

    Full text link
    Estimation of the operational topology of the power grid is necessary for optimal market settlement and reliable dynamic operation of the grid. This paper presents a novel framework for topology estimation for general power grids (loopy or radial) using time-series measurements of nodal voltage phase angles that arise from the swing dynamics. Our learning framework utilizes multivariate Wiener filtering to unravel the interaction between fluctuations in voltage angles at different nodes and identifies operational edges by considering the phase response of the elements of the multivariate Wiener filter. The performance of our learning framework is demonstrated through simulations on standard IEEE test cases.Comment: accepted as a short paper in ACM eEnergy 2017, Hong Kon

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction
    • …
    corecore