6 research outputs found

    Successive statistical and structure-based modeling to identify chemically novel kinase inhibitors

    Get PDF
    Kinases are frequently studied in the context of anticancer drugs. Their involvement in cell responses, such as proliferation, differentiation, and apoptosis, makes them interesting subjects in multitarget drug design. In this study, a workflow is presented that models the bioactivity spectra for two panels of kinases: (1) inhibition of RET, BRAF, SRC, and S6K, while avoiding inhibition of MKNK1, TTK, ERK8, PDK1, and PAK3, and (2) inhibition of AURKA, PAK1, FGFR1, and LKB1, while avoiding inhibition of PAK3, TAK1, and PIK3CA. Both statistical and structure-based models were included, which were thoroughly benchmarked and optimized. A virtual screening was performed to test the workflow for one of the main targets, RET kinase. This resulted in 5 novel and chemically dissimilar RET inhibitors with remaining RET activity of 50 value of 5.1 for the most active compound. The experimental validation of inhibitors for RET strongly indicates that the multitarget workflow is able to detect novel inhibitors for kinases, and hence, this workflow can potentially be applied in polypharmacology modeling. We conclude that this approach can identify new chemical matter for existing targets. Moreover, this workflow can easily be applied to other targets as well.Toxicolog

    A review on machine learning approaches and trends in drug discovery

    Get PDF
    Abstract: Drug discovery aims at finding new compounds with specific chemical properties for the treatment of diseases. In the last years, the approach used in this search presents an important component in computer science with the skyrocketing of machine learning techniques due to its democratization. With the objectives set by the Precision Medicine initiative and the new challenges generated, it is necessary to establish robust, standard and reproducible computational methodologies to achieve the objectives set. Currently, predictive models based on Machine Learning have gained great importance in the step prior to preclinical studies. This stage manages to drastically reduce costs and research times in the discovery of new drugs. This review article focuses on how these new methodologies are being used in recent years of research. Analyzing the state of the art in this field will give us an idea of where cheminformatics will be developed in the short term, the limitations it presents and the positive results it has achieved. This review will focus mainly on the methods used to model the molecular data, as well as the biological problems addressed and the Machine Learning algorithms used for drug discovery in recent years.Instituto de Salud Carlos III; PI17/01826Instituto de Salud Carlos III; PI17/01561Xunta de Galicia; Ref. ED431D 2017/16Xunta de Galicia; Ref. ED431D 2017/23Xunta de Galicia; Ref. ED431C 2018/4

    Annotation of Allosteric Compounds to Enhance Bioactivity Modeling for Class A GPCRs

    Get PDF
    Proteins often have both orthosteric and allosteric binding sites. Endogenous ligands, such as hormones and neurotransmitters, bind to the orthosteric site, while synthetic ligands may bind to orthosteric or allosteric sites, which has become a focal point in drug discovery. Usually, such allosteric modulators bind to a protein noncompetitively with its endogenous ligand or substrate. The growing interest in allosteric modulators has resulted in a substantial increase of these entities and their features such as binding data in chemical libraries and databases. Although this data surge fuels research focused on allosteric modulators, binding data is unfortunately not always clearly indicated as being allosteric or orthosteric. Therefore, allosteric binding data is difficult to retrieve from databases that contain a mixture of allosteric and orthosteric compounds. This decreases model performance when statistical methods, such as machine learning models, are applied. In previous work we generated an allosteric data subset of ChEMBL release 14. In the current study an improved text mining approach is used to retrieve the allosteric and orthosteric binding types from the literature in ChEMBL release 22. Moreover, convolutional deep neural networks were constructed to predict the binding types of compounds for class A G protein-coupled receptors (GPCRs). Temporal split validation showed the model predictiveness with Matthews correlation coefficient (MCC) = 0.54, sensitivity allosteric = 0.54, and sensitivity orthosteric = 0.94. Finally, this study shows that the inclusion of accurate binding types increases binding predictions by including them as descriptor (MCC = 0.27 improved to MCC = 0.34; validated for class A GPCRs, trained on all GPCRs). Although the focus of this study is mainly on class A GPCRs, binding types for all protein classes in ChEMBL were obtained and explored. The data set is included as a supplement to this study, allowing the reader to select the compounds and binding types of interest.Medicinal Chemistr

    Efficacy and safety of metabolic interventions for the treatment of severe COVID-19: in vitro, observational, and non-randomized open-label interventional study

    Get PDF
    Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930

    Identification of novel small molecule inhibitors for solute carrier SGLT1 using proteochemometric modeling

    No full text
    Abstract Sodium-dependent glucose co-transporter 1 (SGLT1) is a solute carrier responsible for active glucose absorption. SGLT1 is present in both the renal tubules and small intestine. In contrast, the closely related sodium-dependent glucose co-transporter 2 (SGLT2), a protein that is targeted in the treatment of diabetes type II, is only expressed in the renal tubules. Although dual inhibitors for both SGLT1 and SGLT2 have been developed, no drugs on the market are targeted at decreasing dietary glucose uptake by SGLT1 in the gastrointestinal tract. Here we aim at identifying SGLT1 inhibitors in silico by applying a machine learning approach that does not require structural information, which is absent for SGLT1. We applied proteochemometrics by implementation of compound- and protein-based information into random forest models. We obtained a predictive model with a sensitivity of 0.64 ± 0.06, specificity of 0.93 ± 0.01, positive predictive value of 0.47 ± 0.07, negative predictive value of 0.96 ± 0.01, and Matthews correlation coefficient of 0.49 ± 0.05. Subsequent to model training, we applied our model in virtual screening to identify novel SGLT1 inhibitors. Of the 77 tested compounds, 30 were experimentally confirmed for SGLT1-inhibiting activity in vitro, leading to a hit rate of 39% with activities in the low micromolar range. Moreover, the hit compounds included novel molecules, which is reflected by the low similarity of these compounds with the training set (< 0.3). Conclusively, proteochemometric modeling of SGLT1 is a viable strategy for identifying active small molecules. Therefore, this method may also be applied in detection of novel small molecules for other transporter proteins
    corecore