681 research outputs found

    Online Identification and Control of Aerospace Vehicles Using Recurrent Networks

    Get PDF
    Methods for estimating the aerospace system parameters and controlling them through two neural networks are presented in this study. We equate the energy function of Hopfield neural network to integral square of errors in the system dynamics and extract the parameters of a system. Parameter convergence is proved. For control, we equate the equilibrium status of a modified Hopfield neural network to the steady state Riccati solution with the system parameters as inputs. Through these two networks, we present the online identification and control of an aircraft using its nonlinear dynamics

    Radar signal categorization using a neural network

    Get PDF
    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Adaptive weighted least squares algorithm for Volterra signal modeling

    No full text
    Published versio
    corecore