2,058 research outputs found

    Robust filtering for bilinear uncertain stochastic discrete-time systems

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the robust filtering problem for uncertain bilinear stochastic discrete-time systems with estimation error variance constraints. The uncertainties are allowed to be norm-bounded and enter into both the state and measurement matrices. We focus on the design of linear filters, such that for all admissible parameter uncertainties, the error state of the bilinear stochastic system is mean square bounded, and the steady-state variance of the estimation error of each state is not more than the individual prespecified value. It is shown that the design of the robust filters can be carried out by solving some algebraic quadratic matrix inequalities. In particular, we establish both the existence conditions and the explicit expression of desired robust filters. A numerical example is included to show the applicability of the present method

    A final report of research on stochastic and adaptive systems

    Get PDF
    Final report."March 1982."Bibliography: p. 26-31.Air Force Office of Scientific Research Grant AFOSR-77-3281Bby Michael Athans, Sanjoy K. Mitter, Lena Valavani

    Additive noise effects in active nonlinear spatially extended systems

    Full text link
    We examine the effects of pure additive noise on spatially extended systems with quadratic nonlinearities. We develop a general multiscale theory for such systems and apply it to the Kuramoto-Sivashinsky equation as a case study. We first focus on a regime close to the instability onset (primary bifurcation), where the system can be described by a single dominant mode. We show analytically that the resulting noise in the equation describing the amplitude of the dominant mode largely depends on the nature of the stochastic forcing. For a highly degenerate noise, in the sense that it is acting on the first stable mode only, the amplitude equation is dominated by a pure multiplicative noise, which in turn induces the dominant mode to undergo several critical state transitions and complex phenomena, including intermittency and stabilisation, as the noise strength is increased. The intermittent behaviour is characterised by a power-law probability density and the corresponding critical exponent is calculated rigorously by making use of the first-passage properties of the amplitude equation. On the other hand, when the noise is acting on the whole subspace of stable modes, the multiplicative noise is corrected by an additive-like term, with the eventual loss of any stabilised state. We also show that the stochastic forcing has no effect on the dominant mode dynamics when it is acting on the second stable mode. Finally, in a regime which is relatively far from the instability onset, so that there are two unstable modes, we observe numerically that when the noise is acting on the first stable mode, both dominant modes show noise-induced complex phenomena similar to the single-mode case
    corecore