226 research outputs found

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.Comment: 11 pages, 4 figure

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Identifying Multiple Influential Users Based on the Overlapping Influence in Multiplex Networks

    Get PDF
    Online social networks (OSNs) are interaction platforms that can promote knowledge spreading, rumor propagation, and virus diffusion. Identifying influential users in OSNs is of great significance for accelerating the information propagation especially when information is able to travel across multiple channels. However, most previous studies are limited to a single network or select multiple influential users based on the centrality ranking result of each user, not addressing the overlapping influence (OI) among users. In practice, the collective influence of multiple users is not equal to the total sum of these users' influences. In this paper, we propose a novel OI-based method for identifying multiple influential users in multiplex social networks. We first define the effective spreading shortest path (ESSP) by utilizing the concept of spreading rate in order to denote the relative location of users. Then, the collective influence is quantified by taking the topological factor and the location distribution of users into account. The identified users based on our proposed method are central and relatively scattered with a low overlapping influence. With the Susceptible-Infected-Recovered (SIR) model, we estimate our proposed method with other benchmark algorithms. Experimental results in both synthetic and real-world networks verify that our proposed method has a better performance in terms of the spreading efficiency. © 2013 IEEE

    Identifying the influential spreaders in multilayer interactions of online social networks

    No full text
    Online social networks (OSNs) portray a multi-layer of interactions through which users become a friend, information is propagated, ideas are shared, and interaction is constructed within an OSN. Identifying the most influential spreaders in a network is a significant step towards improving the use of existing resources to speed up the spread of information for application such as viral marketing or hindering the spread of information for application like virus blocking and rumor restraint. Users communications facilitated by OSNs could confront the temporal and spatial limitations of traditional communications in an exceptional way, thereby presenting new layers of social interactions, which coincides and collaborates with current interaction layers to redefine the multiplex OSN. In this paper, the effects of different topological network structure on influential spreaders identification are investigated. The results analysis concluded that improving the accuracy of influential spreaders identification in OSNs is not only by improving identification algorithms but also by developing a network topology that represents the information diffusion well. Moreover, in this paper a topological representation for an OSN is proposed which takes into accounts both multilayers interactions as well as overlaying links as weight. The measurement results are found to be more reliable when the identification algorithms are applied to proposed topological representation compared when these algorithms are applied to single layer representations

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large- Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community

    Peer influence in social media

    Get PDF
    This literature review will go through the relatively new field of study of peer influence in social media. The neurological study of electronic peer influence can be used to explain why users engage in social media, why social media marketing is effective and why the so-called influencers emerge amongst the social media users. The communication amongst the peers, word-of-mouth, was also a factor in the study. The review was conducted by studying the few peer influence social media studies that currently exist, as well as supporting subjects of word-of-mouth communication, the tie strength research and the endorser/product fit, which are the theories that support the idea of the social media influencer effect
    • …
    corecore