98 research outputs found

    Detection of Obfuscation Techniques in Android Applications

    Get PDF
    Current signature detection mechanisms can be easily evaded by malware writers by applying obfuscation techniques. Employing morphing code techniques, attackers are able to generate several variants of one malicious sample, making the corresponding signature obsolete. Considering that the signature definition is a laborious process manually performed by security analysts, in this paper we propose a method, exploiting static analysis and Machine Learning classification algorithms, to identify whether a mobile application is modified by means of one or more morphing techniques. We perform experiments on a real-world dataset of Android applications (morphed and original), obtaining encouraging results in the obfuscation technique(s) identification

    Longitudinal performance analysis of machine learning based Android malware detectors

    Get PDF
    This paper presents a longitudinal study of the performance of machine learning classifiers for Android malware detection. The study is undertaken using features extracted from Android applications first seen between 2012 and 2016. The aim is to investigate the extent of performance decay over time for various machine learning classifiers trained with static features extracted from date-labelled benign and malware application sets. Using date-labelled apps allows for true mimicking of zero-day testing, thus providing a more realistic view of performance than the conventional methods of evaluation that do not take date of appearance into account. In this study, all the investigated machine learning classifiers showed progressive diminishing performance when tested on sets of samples from a later time period. Overall, it was found that false positive rate (misclassifying benign samples as malicious) increased more substantially compared to the fall in True Positive rate (correct classification of malicious apps) when older models were tested on newer app samples

    A Hybrid Model for Android Malware Detection using Decision Tree and KNN

    Get PDF
    Malwares are becoming a major problem nowadays all around the world in android operating systems. The malware is a piece of software developed for harming or exploiting certain other hardware as well as software. The term Malware is also known as malicious software which is utilized to define Trojans, viruses, as well as other kinds of spyware. There have been developed many kinds of techniques for protecting the android operating systems from malware during the last decade. However, the existing techniques have numerous drawbacks such as accuracy to detect the type of malware in real-time in a quick manner for protecting the android operating systems. In this article, the authors developed a hybrid model for android malware detection using a decision tree and KNN (k-nearest neighbours) technique. First, Dalvik opcode, as well as real opcode, was pulled out by using the reverse procedure of the android software. Secondly, eigenvectors of sampling were produced by utilizing the n-gram model. Our suggested hybrid model efficiently combines KNN along with the decision tree for effective detection of the android malware in real-time. The outcome of the proposed scheme illustrates that the proposed hybrid model is better in terms of the accurate detection of any kind of malware from the Android operating system in a fast and accurate manner. In this experiment, 815 sample size was selected for the normal samples and the 3268-sample size was selected for the malicious samples. Our proposed hybrid model provides pragmatic values of the parameters namely precision, ACC along with the Recall, and F1 such as 0.93, 0.98, 0.96, and 0.99 along with 0.94, 0.99, 0.93, and 0.99 respectively. In the future, there are vital possibilities to carry out more research in this field to develop new methods for Android malware detection

    Android Malware Clustering through Malicious Payload Mining

    Full text link
    Clustering has been well studied for desktop malware analysis as an effective triage method. Conventional similarity-based clustering techniques, however, cannot be immediately applied to Android malware analysis due to the excessive use of third-party libraries in Android application development and the widespread use of repackaging in malware development. We design and implement an Android malware clustering system through iterative mining of malicious payload and checking whether malware samples share the same version of malicious payload. Our system utilizes a hierarchical clustering technique and an efficient bit-vector format to represent Android apps. Experimental results demonstrate that our clustering approach achieves precision of 0.90 and recall of 0.75 for Android Genome malware dataset, and average precision of 0.98 and recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017

    An Efficient Multistage Fusion Approach for Smartphone Security Analysis

    Get PDF
    Android smartphone ecosystem is inundated with innumerable applications mainly developed by third party contenders leading to high vulnerability of these devices. In addition, proliferation of smartphone usage along with their potential applications in diverse field entice malware community to develop new malwares to attack these devices. In order to overcome these issues, an android malware detection framework is proposed wherein an efficient multistage fusion approach is introduced. For this, a robust unified feature vector is created by fusion of transformed feature matrices corresponding to multi-cue using non-linear graph based cross-diffusion. Unified feature is further subjected to multiple classifiers to obtain their classification scores. Classifier scores are further optimally fused employing Dezert-Smarandache Theory (DSmT). Strength of suggested model is assessed both qualitatively and quantitatively by ten-fold cross-validation on the benchmarked datasets. On an average of outcome, we achieved detection accuracy of 98.97% and F-measure of 0.9936.&nbsp
    • …
    corecore