141,814 research outputs found

    Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

    Get PDF
    Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We additionally employ automatic relevance determination to infer a sparse set of dynamic dependencies allowing us to learn SLDS with varying state dimension or switching VAR processes with varying autoregressive order. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, the IBOVESPA stock index, and a maneuvering target tracking application.Comment: 50 pages, 7 figure

    Absorptive capacity and the growth and investment effects of regional transfers : a regression discontinuity design with heterogeneous treatment effects

    Get PDF
    Researchers often estimate average treatment effects of programs without investigating heterogeneity across units. Yet, individuals, firms, regions, or countries vary in their ability, e.g., to utilize transfers. We analyze Objective 1 Structural Funds transfers of the European Commission to regions of EU member states below a certain income level by way of a regression discontinuity design with systematically heterogeneous treatment effects. Only about 30% and 21% of the regions - those with sufficient human capital and good-enough institutions - are able to turn transfers into faster per-capita income growth and per-capita investment. In general, the variance of the treatment effect is much bigger than its mean

    On Reduced Input-Output Dynamic Mode Decomposition

    Full text link
    The identification of reduced-order models from high-dimensional data is a challenging task, and even more so if the identified system should not only be suitable for a certain data set, but generally approximate the input-output behavior of the data source. In this work, we consider the input-output dynamic mode decomposition method for system identification. We compare excitation approaches for the data-driven identification process and describe an optimization-based stabilization strategy for the identified systems

    Model-based Reinforcement Learning with Parametrized Physical Models and Optimism-Driven Exploration

    Full text link
    In this paper, we present a robotic model-based reinforcement learning method that combines ideas from model identification and model predictive control. We use a feature-based representation of the dynamics that allows the dynamics model to be fitted with a simple least squares procedure, and the features are identified from a high-level specification of the robot's morphology, consisting of the number and connectivity structure of its links. Model predictive control is then used to choose the actions under an optimistic model of the dynamics, which produces an efficient and goal-directed exploration strategy. We present real time experimental results on standard benchmark problems involving the pendulum, cartpole, and double pendulum systems. Experiments indicate that our method is able to learn a range of benchmark tasks substantially faster than the previous best methods. To evaluate our approach on a realistic robotic control task, we also demonstrate real time control of a simulated 7 degree of freedom arm.Comment: 8 page
    • …
    corecore