32 research outputs found

    Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins

    Get PDF
    Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast

    Identification of Telomerase RNAs from Filamentous Fungi Reveals Conservation with Vertebrates and Yeasts

    Get PDF
    Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between most organisms, TER is highly divergent and thus difficult to identify. In order to identify the TER sequence, we used the unusually long telomeric repeat sequence of Aspergillus oryzae together with reverse-transcription-PCR and identified a transcribed sequence that contains the potential template within a region predicted to be single stranded. We report the discovery of TERs from twelve other related filamentous fungi using comparative genomic analysis. These TERs exhibited strong conservation with the vertebrate template sequence, and two of these potentially use the identical template as humans. We demonstrate the existence of important processing elements required for the maturation of yeast TERs such as an Sm site, a 59 splice site and a branch point, within the newly identified TER sequences. RNA folding programs applied to the TER sequences show the presence of secondary structures necessary for telomerase activity, such as a yeast-like template boundary, pseudoknot, and a vertebrate-like three-way junction. These telomerase RNAs identified from filamentous fungi display conserved structural elements from both yeast and vertebrate TERs. These findings not only provide insights into the structure and evolution of a complex RNA but also provide molecular tools to further study telomere dynamics in filamentous fungi

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Δrif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic “cushioning” cis-elements

    Characterizing the roles of the putative Tor1p effector, Sfp1p, in growth and development of the fungal pathogen Candida albicans

    Get PDF
    C. albicans is one of the most common fungal pathogens of humans. Important virulence-determining traits include proper cell proliferation and the ability to develop into different cell types, including yeast, pseudohyphae and hyphae. Both of these processes are dependent on environmental cues such as availability and types of nutrients. It is thus important to understand how these cues are sensed and integrated with the machinery that control cell division and development. The TOR pathway plays an important role in mediating environmental conditions in many organisms, and accordingly, TOR kinase is required for cell division and the maintenance of hyphal growth in C. albicans (1). However, the mechanisms by which TOR regulates these processes in the pathogen are not clear. Here, we provide the first characterization of Sfp1p, an orthologue of a major downstream effector of TOR kinase in S. cerevisiae. Deletion of SFP1 in C. albicans resulted in a decrease in cell size, which could be reduced further in the presence of poor carbon source media. The sfp1D/sfp1D cells grew slowly, formed small colonies, and were more sensitive to rapamycin, suggesting that Sfp1p mediates a least part of Tor1p function in C. albicans. Transcription profiles of the deletion strain demonstrated down-regulation of genes involved in ribosome biogenesis, translation, and amino acid synthesis, consistent with a role in the TOR pathway. However, many hyphal-specific genes were upregulated, as well as some genes associated with the opaque cell fate, suggesting additional and novel links with development

    Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities

    Get PDF
    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP10 s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei

    Messenger RNA Destabilization by -1 Programmed Ribosomal Frameshifting

    Get PDF
    Although first discovered in viruses, previous studies have identified programmed -1 ribosomal frameshifting (-1 PRF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. This work improves and extends the computational methods used to search for potential -1 PRF signals. It continues to examine four yeast -1 PRF signals and show that they promote significant mRNA destabilization through the nonsense mediated (NMD) and no-go (NGD) decay pathways. Yeast EST2 mRNA is highly unstable and contains up to five -1 PRF signals. Ablation of the -1 PRF signals or of NMD stabilizes this mRNA. These same computational methods identified an operational programmed -1 ribosomal frameshift (-1 PRF) signal in the human mRNA encoding CCR5. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay (NMD) pathway. CCR5-mediated -1 PRF is stimulated by at least two miRNAs, one of which is shown to directly interact with the CCR5 -1 PRF signal. Structural analyses reveal a complex and dynamic mRNA structure in the -1 PRF signal, suggesting structural plasticity as the underlying biophysical basis for regulation of -1 PRF

    Synergism of the Two Myb Domains of Tay1 Protein Results in High Affinity Binding to Telomeres

    Get PDF
    Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)n and human (TTAGGG)n telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain

    Characterization of putative G1/S transcription complex factors Swi6p, Swi4p and Mbp1p in the fungal pathogen Candida albicans

    Get PDF
    The G1/S transition governs cell proliferation in many systems, and involves essential transcription complexes such as SBF and MBF in Saccharomyces cerevisiae, or MBF in Schizosaccharomyces pombe. SBF and MBF are composed of the regulatory subunit Swi6p and the DNA-binding elements Swi4p (SBF) or Mbp1p (MBF). The fungal pathogen Candida albicans contains orthologues of SWI6, SWI4 and MBP1. Previous genetic, DNA expression and bioinformatic data suggest that Swi4p and Swi6p may be core components of a single MBF-like complex. However, direct evidence is lacking, and the role of Mbp1p is unclear. In order to determine the composition and mechanisms of action of the putative G1/S transcription complex in C. albicans, and identify other factors important for G1/S control, we determined physical interactions between Swi6p, Swi4p and Mbp1p using co-immunoprecipitation, systematically affinity-purified each protein and identified interacting factors through mass spectrometry, and investigated putative Swi4p targets using genome wide location analysis (ChIP-chip). We show that Swi6p physically interacts with Swi4p and Mbp1p, and Swi4p may bind Mbp1p. Affinity purifications did not identify many additional interacting proteins, suggesting that Swi6p, Swi4p and Mbp1p may be the core complex factors. Finally, ChIP-chip analysis identified putative Swi4p targets including G1 cyclins, cell wall-associated factors, and regulators of hyphal growth, consistent with the swi4/ phenotype. Unexpectedly, few putative Swi4p target promoters contained the conserved MBF binding site (ACGCGT). Rather, 8.6% contained a canonical SBF-binding (CNCGAAA) motif, and 43.0% contained a related motif, CACAAAA. Although the ChIP-chip data require confirmation by qPCR, the results suggest that Swi4p may be involved in regulating G1/S progression and hyphal development, but may not exclusively function through the conserved MBF-binding element. In summary, our results provide new insights on G1/S regulation in C. albicans, which have important implications for controlling cell proliferation and development in the pathogen

    VID22 counteracts G-quadruplex-induced genome instability

    Get PDF
    Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.Associazione Italiana per la Ricerca sul Cancro (AIRC) 15631, 21806MIUR PRIN 2015- 2015SJLMB9, PRIN 2017-2017KSZZJW, PRIN2017-2017Z55KCMinisterio de Economía y Competitividad BFU2016- 75058-PCanadian Institutes of Health Research FDN-15991
    corecore