10,253 research outputs found

    Identification of fractional order systems using modulating functions method

    Get PDF
    The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations

    Fractional Systems’ Identification Based on Implicit Modulating Functions

    Get PDF
    This paper presents a new method for parameter identification based on the modulating function method for commensurable fractional-order models. The novelty of the method lies in the automatic determination of a specific modulating function by controlling a model-based auxiliary system, instead of applying and parameterizing a generic modulating function. The input signal of the model-based auxiliary system used to determine the modulating function is designed such that a separate identification of each individual parameter of the fractional-order model is enabled. This eliminates the shortcomings of the common modulating function method in which a modulating function must be adapted to the investigated system heuristically

    Fractional order differentiation by integration: an application to fractional linear systems

    Get PDF
    International audienceIn this article, we propose a robust method to compute the output of a fractional linear system defined through a linear fractional differential equation (FDE) with time-varying coefficients, where the input can be noisy. We firstly introduce an estimator of the fractional derivative of an unknown signal, which is defined by an integral formula obtained by calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then approximate the FDE by applying to each fractional derivative this formal algebraic integral estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi polynomials and then we need to identify the unknown coefficients of the truncated series expansion of the solution. Modulating functions method is used to estimate these coefficients by solving a linear system issued from the approximated FDE and some initial conditions. A numerical result is given to confirm the reliability of the proposed method

    Single channel nonstationary signal separation using linear time-varying filters

    Get PDF

    Bias-free Parameter Identification of a Fractional Order Model

    Get PDF
    This paper deals with the parameter identification of a fractional system considering a noisy observation of the output signal. The novelty is that the instrumental variable method is applied to the modulating function method applied to a fractional system. A simulated output signal which is not correlated to noise is required as the instrumental variable. Because all known simulation algorithms only consider zero initial conditions, the simulated output signal converges against the true output signal in an undefined time if the zero initial conditions are penalized. Therefore, an algorithm is extended with the short-memory principle. The benefit is that after a fixed time the error between the simulated and true output signal is small and can be used as the instrumental variable. Considering this extension of the simulation algorithms, it is shown that a consistent estimation is yield with the instrumental variable method

    Non-Asymptotic State and Disturbance Estimation for a Class of Triangular Nonlinear Systems using Modulating Functions

    Full text link
    Dynamical models are often corrupted by model uncertainties, external disturbances, and measurement noise. These factors affect the performance of model-based observers and as a result, affect the closed-loop performance. Therefore, it is critical to develop robust model-based estimators that reconstruct both the states and the model disturbances while mitigating the effect of measurement noise in order to ensure good system monitoring and closed-loop performance when designing controllers. In this article, a robust step by step non-asymptotic observer for triangular nonlinear systems for the joint estimation of the state and the disturbance is developed. The proposed approach provides a sequential estimation of the states and the disturbance in finite time using smooth modulating functions. The robustness of the proposed observer is both in the sense of model disturbances and measurement noise. In fact, the structure of triangular systems combined with the modulating function-based method allows the estimation of the states independently of model disturbances and the integral operator involved in the modulating function-based method mitigates the noise. Additionally, the modulating function method shifts the derivative from the noisy output to the smooth modulating function which strengthens its robustness properties. The applicability of the proposed modulating function-based estimator is illustrated in numerical simulations and compared to a second-order sliding mode super twisting observer under different measurement noise levels.Comment: 24 page
    • …
    corecore