1,630 research outputs found

    Finger Vein Recognition with Hybrid Deep Learning Approach

    Get PDF
    Finger vein biometrics is an identification technique based on the vein patterns in fingers, and it has the benefit of being difficult to counterfeit. Due to its high level of security, durability, and performance history, finger vein recognition captures our attention as one of the most significant authentication methods available today. Using a mixed deep learning approach, we investigate the challenge of identifying the finger vein sensor model. Thus far, we use Traditional LSTM architectures for this biometric modality. This work also suggests a brand-new hybrid architecture that shines due to its compactness and a merging with the LSMT layer to be taught. In the experiment, original samples as well as the region of interest data from eight freely available FV-USM datasets are employed. The standard LSTM-based strategy is preferable and produced better outcomes, as seen by the comparison with the earlier approaches. Moreover, the results show that the hybrid CNN and LSTM networks may be used to improve vein detection performance

    Finger Vein Recognition Based on PCA Feature using Artificial Neural Network

    Get PDF
    Personal recognition technology is developing rapidly as a security system. Traditional methods such as authentication key; password: card is not secure enough, because they could be stolen or easily forget. Biometrics has been applied to a wide range of systems. According to various researchers, vein biometrics was a good technique from other biometric authentication system used, such as fingerprints, hand geometry, voice, etc. of the DNA. Root Authentication systems can be designed in different ways. All methods include the matching stage. A neural network is an effective way of matching Personal identification authentication system. The finger vein pattern is unique biometric identity of the human beings. The finger vein recognition is a popular biometric technique which is used for authentication purposes in various applications. In the propose work an algorithm is proposed to find the accuracy, FRR and FAR of finger vein recognition. The performances of PCA, threshold segmentation, pre-processing and testing & training techniques has been validate and compared with each other in order to determine the most accurate results in terms of finger vein recognition

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    A review of finger vein recognition system

    Get PDF
    Recently, the security-based system using finger vein as a biometric trait has been getting more attention from researchers all over the world, and these researchers have achieved positive progress. Many works have been done in different methods to improve the performance and accuracy of the personal identification and verification results. This paper discusses the previous methods of finger vein recognition system which include three main stages: preprocessing, feature extraction and classification. The advantages and limitations of these previous methods are reviewed at the same time we present the main problems of the finger vein recognition system to make it as a future direction in this field

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Finger Vein Recognition Using Principle Component Analysis and Adaptive k-Nearest Centroid Neighbor Classifier

    Get PDF
    The k-nearest centroid neighbor kNCN classifier is one of the non-parametric classifiers which provide a powerful decision based on the geometrical surrounding neighborhood. Essentially, the main challenge in the kNCN is due to slow classification time that utilizing all training samples to find each nearest centroid neighbor. In this work, an adaptive k-nearest centroid neighbor (akNCN) is proposed as an improvement to the kNCN classifier. Two new rules are introduced to adaptively select the neighborhood size of the test sample. The neighborhood size for the test sample is changed through the following ways: 1) The neighborhood size, k will be adapted to j if the centroid distance of j-th nearest centroid neighbor is greater than the predefined boundary. 2) There is no need to look for further nearest centroid neighbors if the maximum number of samples of the same class is found among jth nearest centroid neighbor. Thus, the size of neighborhood is adaptively changed to j. Experimental results on theFinger Vein USM (FV-USM) image database demonstrate the promising results in which the classification time of the akNCN classifier is significantly reduced to 51.56% in comparison to the closest competitors, kNCN and limited-kNCN. It also outperforms its competitors by achieving the best reduction ratio of 12.92% whilemaintaining the classification accuracy

    Identification of Finger Vein Images with Deep Neural Networks

    Get PDF
    To establish identification, individuals often utilize biometrics so that their identity cannot be exploited without their consent. Collecting biometric data is getting easier. Existing smartphones and other intelligent technologies can discreetly acquire biometric information. Authentication through finger vein imaging is a biometric identification technique based on a vein pattern visible under finger's skin. Veins are safeguarded by the epidermis and cannot be duplicated. This research focuses on the consistent characteristics of veins in fingers. We collected invariant characteristics from several cutting-edge deep learning techniques before classifying them using multiclass SVM. We used publicly available image datasets of finger veins for this purpose. Several assessment criteria and a comparison of different deep learning approaches were used to characterize the performance and efficiency of these models on the SDUMLA-HMT dataset.&nbsp
    • …
    corecore