3,868 research outputs found

    An EEG study on emotional intelligence and advertising message effectiveness

    Get PDF
    Some electroencephalography (EEG) studies have investigated emotional intelligence (EI), but none have examined the relationships between EI and commercial advertising messages and related consumer behaviors. This study combines brain (EEG) techniques with an EI psychometric to explore the brain responses associated with a range of advertisements. A group of 45 participants (23females, 22males) had their EEG recorded while watching a series of advertisements selected from various marketing categories such as community interests, celebrities, food/drink, and social issues. Participants were also categorized as high or low in emotional intelligence (n = 34). The EEG data analysis was centered on rating decision-making in order to measure brain responses associated with advertising information processing for both groups. The findings suggest that participants with high and low emotional intelligence (EI) were attentive to different types of advertising messages. The two EI groups demonstrated preferences for “people” or “object,” related advertising information. This suggests that differences in consumer perception and emotions may suggest why certain advertising material or marketing strategies are effective or not

    Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study

    Get PDF
    Background: The understanding of neurophysiological correlates underlying the risk of developing depression may have a significant impact on its early and objective identification. Research has identified abnormal resting-state electroencephalography (EEG) power and functional connectivity patterns in major depression. However, the entity of dysfunctional EEG dynamics in dysphoria is yet unknown. Methods: 32-channel EEG was recorded in 26 female individuals with dysphoria and in 38 age-matched, female healthy controls. EEG power spectra and alpha asymmetry in frontal and posterior channels were calculated in a 4-minute resting condition. An EEG functional connectivity analysis was conducted through phase locking values, particularly mean phase coherence. Results: While individuals with dysphoria did not differ from controls in EEG spectra and asymmetry, they exhibited dysfunctional brain connectivity. Particularly, in the theta band (4-8 Hz), participants with dysphoria showed increased connectivity between right frontal and central areas and right temporal and left occipital areas. Moreover, in the alpha band (8-12 Hz), dysphoria was associated with increased connectivity between right and left prefrontal cortex and between frontal and central-occipital areas bilaterally. Limitations: All participants belonged to the female gender and were relatively young. Mean phase coherence did not allow to compute the causal and directional relation between brain areas. Conclusions: An increased EEG functional connectivity in the theta and alpha bands characterizes dysphoria. These patterns may be associated with the excessive self-focus and ruminative thinking that typifies depressive symptoms. EEG connectivity patterns may represent a promising measure to identify individuals with a higher risk of developing depression

    Disruption of Rolandic Gamma-Band Functional Connectivity by Seizures is Associated with Motor Impairments in Children with Epilepsy

    Get PDF
    Although children with epilepsy exhibit numerous neurological and cognitive deficits, the mechanisms underlying these impairments remain unclear. Synchronization of oscillatory neural activity in the gamma frequency range (>30 Hz) is purported to be a mechanism mediating functional integration within neuronal networks supporting cognition, perception and action. Here, we tested the hypothesis that seizure-induced alterations in gamma synchronization are associated with functional deficits. By calculating synchrony among electrodes and performing graph theoretical analysis, we assessed functional connectivity and local network structure of the hand motor area of children with focal epilepsy from intracranial electroencephalographic recordings. A local decrease in inter-electrode phase synchrony in the gamma bands during ictal periods, relative to interictal periods, within the motor cortex was strongly associated with clinical motor weakness. Gamma-band ictal desychronization was a stronger predictor of deficits than the presence of the seizure-onset zone or lesion within the motor cortex. There was a positive correlation between the magnitude of ictal desychronization and impairment of motor dexterity in the contralateral, but not ipsilateral hand. There was no association between ictal desynchronization within the hand motor area and non-motor deficits. This study uniquely demonstrates that seizure-induced disturbances in cortical functional connectivity are associated with network-specific neurological deficits

    The organization of functional neurocognitive networks in focal epilepsy correlates with domain-specific cognitive performance

    Get PDF
    Understanding and diagnosing cognitive impairment in epilepsy remains a prominent challenge. New etiological models suggest that cognitive difficulties might not be directly linked to seizure activity, but are rather a manifestation of a broader brain pathology. Consequently, treating seizures is not sufficient to alleviate cognitive symptoms, highlighting the need for novel diagnostic tools. Here, we investigated whether the organization of three intrinsic, resting-state functional connectivity networks was correlated with domain-specific cognitive test performance. Using individualized EEG source reconstruction and graph theory, we examined the association between network small worldness and cognitive test performance in 23 patients with focal epilepsy and 17 healthy controls, who underwent a series of standardized pencil-and-paper and digital cognitive tests. We observed that the specific networks robustly correlated with test performance in distinct cognitive domains. Specifically, correlations were evident between the default mode network and memory in patients, the central-executive network and executive functioning in controls, and the salience network and social cognition in both groups. Interestingly, the correlations were evident in both groups, but in different domains, suggesting an alteration in these functional neurocognitive networks in focal epilepsy. The present findings highlight the potential clinical relevance of functional brain network dysfunction in cognitive impairment.Peer reviewe

    Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Get PDF
    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance
    corecore