14,767 research outputs found

    PeptiCKDdb-peptide- and protein-centric database for the investigation of genesis and progression of chronic kidney disease

    Get PDF
    The peptiCKDdb is a publicly available database platform dedicated to support research in the field of chronic kidney disease (CKD) through identification of novel biomarkers and molecular features of this complex pathology. PeptiCKDdb collects peptidomics and proteomics datasets manually extracted from published studies related to CKD. Datasets from peptidomics or proteomics, human case/control studies on CKD and kidney or urine profiling were included. Data from 114 publications (studies of body fluids and kidney tissue: 26 peptidomics and 76 proteomics manuscripts on human CKD, and 12 focusing on healthy proteome profiling) are currently deposited and the content is quarterly updated. Extracted datasets include information about the experimental setup, clinical study design, discovery-validation sample sizes and list of differentially expressed proteins (P-value < 0.05). A dedicated interactive web interface, equipped with multiparametric search engine, data export and visualization tools, enables easy browsing of the data and comprehensive analysis. In conclusion, this repository might serve as a source of data for integrative analysis or a knowledgebase for scientists seeking confirmation of their findings and as such, is expected to facilitate the modeling of molecular mechanisms underlying CKD and identification of biologically relevant biomarkers.Database URL: www.peptickddb.com

    Metaproteomics for analysis of microbial function in the environment

    Get PDF
    This report briefly describes the approach of using proteomic analyses to examine protein expression directly from environmental samples (termed metaproteomics). This approach has potential for solving one of the major challenges facing microbial ecologists, by providing insight of microbial function directly within samples

    Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling

    Get PDF
    <b>Background:</b>  Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues.<p></p> <b>Methods:</b>  Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of tissues using filter-aided sample preparation (FASP) method. Trypsin digested proteins were analysed using quantitative label-free proteomics approach followed by data interpretation and pathways analysis.<p></p> <b>Results:</b>  A total of 1761 proteins were identified and quantified with high confidence (MASCOT ion score threshold of 35 and P-value <0.05). Of these, 596 proteins were identified as differentially expressed between cancer and noncancer tissues. Two upregulated proteins in tumour samples (adipose differentiation-related protein and Coronin 1A) were further validated by immunohistochemistry. Pathway analysis using IPA, KOBAS 2.0, DAVID functional annotation and FLink tools showed enrichment of many cancer-related biological processes and pathways such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways.<p></p> <b>Conclusions:<b>  Our study identified a number of differentially expressed proteins and pathways using label-free proteomics approach in RCC compared with normal tissue samples. Two proteins validated in this study are the focus of on-going research in a large cohort of patients.<p></p&gt

    Large-scale and significant expression from pseudogenes in Sodalis glossinidius – a facultative bacterial endosymbiont

    Get PDF
    The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple ‘omic’ strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host–microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches

    Bacterial riboproteogenomics : the era of N-terminal proteoform existence revealed

    Get PDF
    With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome re-annotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms

    Proteomics in cardiovascular disease: recent progress and clinical implication and implementation

    Get PDF
    Introduction: Although multiple efforts have been initiated to shed light into the molecular mechanisms underlying cardiovascular disease, it still remains one of the major causes of death worldwide. Proteomic approaches are unequivocally powerful tools that may provide deeper understanding into the molecular mechanisms associated with cardiovascular disease and improve its management. Areas covered: Cardiovascular proteomics is an emerging field and significant progress has been made during the past few years with the aim of defining novel candidate biomarkers and obtaining insight into molecular pathophysiology. To summarize the recent progress in the field, a literature search was conducted in PubMed and Web of Science. As a result, 704 studies from PubMed and 320 studies from Web of Science were retrieved. Findings from original research articles using proteomics technologies for the discovery of biomarkers for cardiovascular disease in human are summarized in this review. Expert commentary: Proteins associated with cardiovascular disease represent pathways in inflammation, wound healing and coagulation, proteolysis and extracellular matrix organization, handling of cholesterol and LDL. Future research in the field should target to increase proteome coverage as well as integrate proteomics with other omics data to facilitate both drug development as well as clinical implementation of findings

    Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products

    Get PDF
    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots

    Quantitative Proteomic Analysis Reveals Changes in the Benchmark Corynebacterium pseudotuberculosis Biovar Equi Exoproteome after Passage in a Murine Host

    Get PDF
    Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.Fil: Marques Da Silva, Wanderson. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasil. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carvalho, Rodrigo D. De Oliveira. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Dorella, Fernanda A.. Universidade Federal de Minas Gerais; BrasilFil: Folador, Edson L.. Universidade Federal da Paraíba. Centro de Biotecnologia; BrasilFil: Souza, Gustavo H. M. F.. Waters Corporation; BrasilFil: Pimenta, Adriano M. C.. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Figueiredo, Henrique C. P.. Universidade Federal de Minas Gerais; BrasilFil: Le Loir, Yves. Institut National de la Recherche Agronomique; FranciaFil: Silva, Artur. Universidade Federal do Pará; BrasilFil: Azevedo, Vasco. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasi

    Differential Proteomic Analysis of Human Saliva using Tandem Mass Tags Quantification for Gastric Cancer Detection.

    Get PDF
    Novel biomarkers and non-invasive diagnostic methods are urgently needed for the screening of gastric cancer to reduce its high mortality. We employed quantitative proteomics approach to develop discriminatory biomarker signatures from human saliva for the detection of gastric cancer. Salivary proteins were analyzed and compared between gastric cancer patients and matched control subjects by using tandem mass tags (TMT) technology. More than 500 proteins were identified with quantification, and 48 of them showed significant difference expression (p < 0.05) between normal controls and gastric cancer patients, including 7 up-regulated proteins and 41 down-regulated proteins. Five proteins were selected for initial verification by ELISA and three were successfully verified, namely cystatin B (CSTB), triosephosphate isomerase (TPI1), and deleted in malignant brain tumors 1 protein (DMBT1). All three proteins could differentiate gastric cancer patients from normal control subjects, dramatically (p < 0.05). The combination of these three biomarkers could reach 85% sensitivity and 80% specificity for the detection of gastric cancer with accuracy of 0.93. This study provides the proof of concept of salivary biomarkers for the non-invasive detection of gastric cancer. It is highly encouraging to turn these biomarkers into an applicable clinical test after large scale validation
    • …
    corecore