1,009 research outputs found

    Cooperativity among Short Amyloid Stretches in Long Amyloidogenic Sequences

    Get PDF
    Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ∼30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues

    Prediction of amyloid fibril-forming segments based on a support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyloid fibrillar aggregates of proteins or polypeptides are known to be associated with many human diseases. Recent studies suggest that short protein regions trigger this aggregation. Thus, identifying these short peptides is critical for understanding diseases and finding potential therapeutic targets.</p> <p>Results</p> <p>We propose a method, named Pafig (Prediction of amyloid fibril-forming segments) based on support vector machines, to identify the hexpeptides associated with amyloid fibrillar aggregates. The features of Pafig were obtained by a two-round selection from AAindex. Using a 10-fold cross validation test on Hexpepset dataset, Pafig performed well with regards to overall accuracy of 81% and Matthews correlation coefficient of 0.63. Pafig was used to predict the potential fibril-forming hexpeptides in all of the 64,000,000 hexpeptides. As a result, approximately 5.08% of hexpeptides showed a high aggregation propensity. In the predicted fibril-forming hexpeptides, the amino acids – alanine, phenylalanine, isoleucine, leucine and valine occurred at the higher frequencies and the amino acids – aspartic acid, glutamic acid, histidine, lysine, arginine and praline, appeared with lower frequencies.</p> <p>Conclusion</p> <p>The performance of Pafig indicates that it is a powerful tool for identifying the hexpeptides associated with fibrillar aggregates and will be useful for large-scale analysis of proteomic data.</p

    Molecular Dynamics Studies on 3D Structures of the Hydrophobic Region PrP(109-136)

    Get PDF
    Prion diseases caused by the conversion from a soluble normal cellular prion protein into insoluble abnormally folded infectious prions, are invariably fatal and highly infectious degenerative diseases that affect a wide variety of mammalian species. The palindrome and the Glycine-rich conserved segment in the hydrophobic region 109-136 control the conversion from normal prion protein to form into diseased prions. This paper gives detailed reviews on the 109-136 region and presents the studies of its 3D structures and structural dynamics.Comment: This paper was accepted on 18-02-2013 by the journal Acta Biochimica et Biophysica Sinica, in press in Vol 45 No 4, Apr 201

    A method for probing the mutational landscape of amyloid structure

    Get PDF
    Motivation: Proteins of all kinds can self-assemble into highly ordered β-sheet aggregates known as amyloid fibrils, important both biologically and clinically. However, the specific molecular structure of a fibril can vary dramatically depending on sequence and environmental conditions, and mutations can drastically alter amyloid function and pathogenicity. Experimental structure determination has proven extremely difficult with only a handful of NMR-based models proposed, suggesting a need for computational methods. Results: We present AmyloidMutants, a statistical mechanics approach for de novo prediction and analysis of wild-type and mutant amyloid structures. Based on the premise of protein mutational landscapes, AmyloidMutants energetically quantifies the effects of sequence mutation on fibril conformation and stability. Tested on non-mutant, full-length amyloid structures with known chemical shift data, AmyloidMutants offers roughly 2-fold improvement in prediction accuracy over existing tools. Moreover, AmyloidMutants is the only method to predict complete super-secondary structures, enabling accurate discrimination of topologically dissimilar amyloid conformations that correspond to the same sequence locations. Applied to mutant prediction, AmyloidMutants identifies a global conformational switch between Aβ and its highly-toxic ‘Iowa’ mutant in agreement with a recent experimental model based on partial chemical shift data. Predictions on mutant, yeast-toxic strains of HET-s suggest similar alternate folds. When applied to HET-s and a HET-s mutant with core asparagines replaced by glutamines (both highly amyloidogenic chemically similar residues abundant in many amyloids), AmyloidMutants surprisingly predicts a greatly reduced capacity of the glutamine mutant to form amyloid. We confirm this finding by conducting mutagenesis experiments.National Institutes of Health (U.S.) (grant 1R01GM081871)National Institutes of Health (U.S.) (grant GM25874

    Computational methods to predict protein aggregation

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICIn most cases, protein aggregation stems from the establishment of non-native intermolecular contacts. The formation of insoluble protein aggregates is associated with many human diseases and is a major bottleneck for the industrial production of protein-based therapeutics. Strikingly, fibrillar aggregates are naturally exploited for structural scaffolding or to generate molecular switches and can be artificially engineered to build up multi-functional nanomaterials. Thus, there is a high interest in rationalizing and forecasting protein aggregation. Here, we review the available computational toolbox to predict protein aggregation propensities, identify sequential or structural aggregation-prone regions, evaluate the impact of mutations on aggregation or recognize prion-like domains. We discuss the strengths and limitations of these algorithms and how they can evolve in the next future
    corecore