10,403 research outputs found

    Fighting viral infections and virus-driven tumors with cytotoxic CD4+ T cells

    Get PDF
    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Prediction of MHC-peptide binding: a systematic and comprehensive overview

    Get PDF
    T cell immune responses are driven by the recognition of peptide antigens (T cell epitopes) that are bound to major histocompatibility complex (MHC) molecules. T cell epitope immunogenicity is thus contingent on several events, including appropriate and effective processing of the peptide from its protein source, stable peptide binding to the MHC molecule, and recognition of the MHC-bound peptide by the T cell receptor. Of these three hallmarks, MHC-peptide binding is the most selective event that determines T cell epitopes. Therefore, prediction of MHC-peptide binding constitutes the principal basis for anticipating potential T cell epitopes. The tremendous relevance of epitope identification in vaccine design and in the monitoring of T cell responses has spurred the development of many computational methods for predicting MHC-peptide binding that improve the efficiency and economics of T cell epitope identification. In this report, we will systematically examine the available methods for predicting MHC-peptide binding and discuss their most relevant advantages and drawbacks

    Engaging the Immune Response to Normalize the Tumor Microenvironment

    Get PDF
    Solid tumors exist as heterogeneous populations comprised not only of malignant cells, but various other cell types, including cells that make up the vasculature, that can strongly influence tumorgenicity. Many forms of solid cancers are highly vascularized due to dysregulated angiogenesis. The tumor vasculature is classified by leaky, chaotic blood vessels consisting of several components including vascular endothelial cells and pericytes, as well vascular progenitors, resulting in vascular permeability and high interstitial pressure. As a result, the tumor vasculature limits the access of immune effector cells to the tumor, and may in part be responsible for the modest success observed in many current anti-cancer immunotherapies. Current first-line therapeutics in the advanced stage disease setting include anti-angiogenic small molecule drugs that have yielded high objective clinical response rates, however these responses tend to be transient in nature, with most patients becoming drug-refractory. Anti-tumor vasculature vaccines may promote the reconditioning of the tumor microenvironment by coordinately promoting a pro-inflammatory environment and the specific immune targeting of tumor-associated stromal cell populations that contribute to vasculature destabilization. Implementing a vaccine with these therapeutic effects is a promising treatment option that may extend disease-free intervals and overall patient survival. I show that vaccines specifically targeting tumor vasculature populations can “normalize” the tumor microenvironment, as shown by upregulation of proinflammatory molecules within the tumor as well as vascular remodeling promoting enhanced recruitment of CD8+ T cells, resulting in superior anti-tumor efficacy

    Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure

    Get PDF
    Background : Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. Methodology/Principal Findings : A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). Conclusion/Significance : We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck

    Unmasking cryptic epitopes after loss of immunodominant tumor antigens through epitope spreading

    Get PDF

    Immunogenicity of HLA Class i and II double restricted influenza a-derived peptides

    Get PDF
    The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and-II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A02:01 and HLA-DRB101:01 molecules were identified by bioinformatics and biochemical technology. Immunization of transgenic HLA-A02:01/HLADRB101:01 mice with four of these double binding peptides gave rise to both HLA class I and class II restricted responses by CD8 and CD4 T cells, respectively, whereas four of the double binding peptides did result in HLA-A02:01 restricted responses only. According to their cytokine profile, the CD4 T cell responses were of the Th2 type. In influenza infected mice, we were unable to detect natural processing in vivo of the double restricted peptides and in line with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise to both HLA class I and class I restricted responses, a quality which might be of potential interest for peptide-based vaccine development.Fil: Pedersen, Sara Ram. Universidad de Copenhagen; DinamarcaFil: Christensen, Jan Pravsgaard. Universidad de Copenhagen; DinamarcaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Korsholm, Karen Smith. Statens Serum Institute; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Claesson, Mogens Helweg. Universidad de Copenhagen; Dinamarc

    Assessment of the Efficiency of Technological Processes to Modify Whey Protein Antigenicity

    Get PDF
    Whey is a by-product that represents a cheap source of protein with a high nutritional value, often used to improve food quality. When used as a raw material to produce hypoallergenic infant formulas (HIF), a processing step able to decrease the allergenic potential is required to guarantee their safe use for this purpose. In the present paper, thermal treatments, high hydrostatic pressure (HHP), and enzymatic hydrolysis (EH) were assessed to decrease the antigenicity of whey protein solutions (WPC). For monitoring purposes, a competitive ELISA method, able to detect the major and most allergenic whey protein β-lactoglobulin (BLG), was developed as a first step to evaluate the efficiency of the processes. Results showed that EH together with HHP was the most effective combination to reduce WPC antigenicity. The evaluation method proved useful to monitor the processes and to be employed in the quality control of the final product, to guarantee the efficiency, and in protein antigenicity reduction. // Resumen: El suero es un subproducto que representa una fuente barata de proteínas con un alto valor nutricional, A menudo se utiliza para mejorar la calidad de los alimentos. Cuando se utiliza como materia prima para producir bebés hipoalergénicos. fórmulas (HIF), se requiere un paso de procesamiento capaz de disminuir el potencial alergénico para garantizar su uso seguro para este fin. En el presente trabajo, tratamientos térmicos, alta presión hidrostática. (HHP) y la hidrólisis enzimática (EH) se evaluaron para disminuir la antigenicidad de la proteína del suero. soluciones (WPC). Para fines de seguimiento, se ha utilizado un método ELISA competitivo, capaz de detectar las principales y la proteína de suero más alergénica, la β-lactoglobulina (BLG), se desarrolló como un primer paso para evaluar la eficiencia de los procesos. Los resultados mostraron que EH junto con HHP fue el más efectivo combinación para reducir la antigenicidad de WPC. El método de evaluación resultó útil para monitorear la procesos y ser empleados en el control de calidad del producto final, para garantizar la eficiencia, y en la reducción de la antigenicidad de las proteínas.Instituto de Investigación de Tecnología de Alimentos (ITA)Fil: Ambrosi, Vanina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Tecnología de Alimentos; Argentina.Fil: Ambrosi, Vanina. Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS) UEDD INTA-CONICET; Argentina.Fil: Ambrosi, Vanina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Guidi, Silvina Mabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Tecnología de Alimentos; Argentina.Fil: Guidi, Silvina Mabel. Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS) UEDD INTA-CONICET; Argentina.Fil: Guidi, Silvina Mabel. Universidad de Morón. Escuela Superior de Agronomía y Ciencias Agroalimentarias (ESIIyCA); Argentina.Fil: Primrose, Debora Marina. Universidad de Morón. Escuela Superior de Agronomía y Ciencias Agroalimentarias (ESIIyCA); Argentina.Fil: Gonzalez, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Polenta, Gustavo Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Tecnología de Alimentos; Argentina.Fil: Polenta, Gustavo Alberto. Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS) UEDD INTA-CONICET; Argentina.Fil: Polenta, Gustavo Alberto. Universidad Nacional de Hurlingham. Instituto de Biotecnología; Argentina

    Immunological fingerprint of 4CMenB recombinant antigens via protein microarray reveals key immunosignatures correlating with bactericidal activity

    Get PDF
    Serogroup B meningococcus (MenB) is a leading cause of meningitis and sepsis across the world and vaccination is the most effective way to protect against this disease. 4CMenB is a multi-component vaccine against MenB, which is now licensed for use in subjects >2 months of age in several countries. In this study, we describe the development and use of an ad hoc protein microarray to study the immune response induced by the three major 4CMenB antigenic components (fHbp, NHBA and NadA) in individual sera from vaccinated infants, adolescents and adults. The resulting 4CMenB protein antigen fingerprinting allowed the identification of specific human antibody repertoire correlating with the bactericidal response elicited in each subject. This work represents an example of epitope mapping of the immune response induced by a multicomponent vaccine in different age groups with the identification of protective signatures. It shows the high flexibility of this microarray based methodology in terms of high-throughput information and minimal volume of biological samples needed
    corecore