592 research outputs found

    Reconhecimento de padrões baseado em compressão: um exemplo de biometria utilizando ECG

    Get PDF
    The amount of data being collected by sensors and smart devices that people use on their daily lives has been increasing at higher rates than ever before. That enables the possibility of using biomedical signals in several applications, with the aid of pattern recognition algorithms in several applications. In this thesis we investigate the usage of compression based methods to perform classification using one-dimensional signals. In order to test those methods, we use as testbed example, electrocardiographic (ECG) signals and the task biometric identification. First and foremost, we introduce the notion of Kolmogorov complexity and how it relates with compression methods. Then, we explain how can these methods be useful for pattern recognition, by exploring different compression-based measures, namely, the Normalized Relative Compression, a measure based on the relative similarity between strings. For this purpose, we present finite-context models and explain the theory behind a generalized version of those models, called the extended-alphabet finite-context models, a novel contribution. Since the testbed application for the methods presented in the thesis is based on ECG signals, we explain what constitutes such a signal and the methods that should be used before data compresison can be applied to them, such as filtering and quantization. Finally, we explore the application of biometric identification using the ECG signal into more depth, making some tests regarding the acquisition of signals and benchmark different proposals based on compresison methods, namely, non-fiducial ones. We also highlight the advantages of such an alternative approach to machine learning methods, namely, low computational costs and not requiring any kind of feature extraction, making this approach easily transferable into different applications and signals.A quantidade de dados recolhidos por sensores e dispositivos inteligentes que as pessoas utilizam no seu dia a dia tem aumentado a taxas mais elevadas do que nunca. Isso possibilita a utilização de sinais biomédicos em diversas aplicações práticas, com o auxílio de algoritmos de reconhecimento de padrões. Nesta tese, investigamos o uso de métodos baseados em compressão para realizar classificação de sinais unidimensionais. Para testar esses métodos, utilizamos, como aplicação de exemplo, o problema de identificação biométrica através de sinais eletrocardiográficos (ECG). Em primeiro lugar, introduzimos a noção de complexidade de Kolmogorov e a forma como a mesma se relaciona com os métodos de compressão. De seguida, explicamos como esses métodos são úteis para reconhecimento de padrões, explorando diferentes medidas baseadas em compressão, nomeadamente, a compressão relativa normalizada (NRC), uma medida baseada na similaridade relativa entre strings. Para isso, apresentamos os modelos de contexto finito e explicaremos a teoria por detrás de uma versão generalizada desses modelos, chamados de modelos de contexto finito de alfabeto estendido (xaFCM), uma nova contribuição. Uma vez que a aplicação de exemplo para os métodos apresentados na tese é baseada em sinais de ECG, explicamos também o que constitui tal sinal e os métodos que devem ser utilizados antes que a compressão de dados possa ser aplicada aos mesmos, tais como filtragem e quantização. Por fim, exploramos com maior profundidade a aplicação da identificação biométrica utilizando o sinal de ECG, realizando alguns testes relativos à aquisição de sinais e comparando diferentes propostas baseadas em métodos de compressão, nomeadamente os não fiduciais. Destacamos também as vantagens de tal abordagem, alternativa aos métodos de aprendizagem computacional, nomeadamente, baixo custo computacional bem como não exigir tipo de extração de atributos, tornando esta abordagem mais facilmente transponível para diferentes aplicações e sinais.Programa Doutoral em Informátic

    Heart sound monitoring sys

    Get PDF
    Cardiovascular disease (CVD) is among the leading life threatening ailments [1] [2].Under normal circumstances, a cardiac examination utilizing electrocardiogram appliances or tools is proposed for a person stricken with a heart disorder. The logging of irregular heart behaviour and morphology is frequently achieved through an electrocardiogram (ECG) produced by an electrocardiographic appliance for tracing cardiac activity. For the most part, gauging of this activity is achieved through a non-invasive procedure i.e. through skin electrodes. Taking into consideration the ECG and heart sound together with clinical indications, the cardiologist arrives at a diagnosis on the condition of the patient's heart. This paper focuses on the concerns stated above and utilizes the signal processing theory to pave the way for better heart auscultation performance by GPs. The objective is to take note of heart sounds in correspondence to the valves as these sounds are a source of critical information. Comparative investigations regarding MFCC features with varying numbers of HMM states and varying numbers of Gaussian mixtures were carried out for the purpose of determining the impact of these features on the classification implementation at the sites of heart sound auscultation. We employ new strategy to evaluate and denoise the heart and ecg signal with a specific end goal to address specific issues

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Efficient and secured wireless monitoring systems for detection of cardiovascular diseases

    Get PDF
    Cardiovascular Disease (CVD) is the number one killer for modern era. Majority of the deaths associated with CVD can entirely be prevented if the CVD struck person is treated with urgency. This thesis is our effort in minimizing the delay associated with existing tele-cardiology application. We harnessed the computational power of modern day mobile phones to detect abnormality in Electrocardiogram (ECG). If abnormality is detected, our innovative ECG compression algorithm running on the patient's mobile phone compresses and encrypts the ECG signal and then performs efficient transmission towards the doctors or hospital services. According to the literature, we have achieved the highest possible compression ratio of 20.06 (95% compression) on ECG signal, without any loss of information. Our 3 layer permutation cipher based ECG encoding mechanism can raise the security strength substantially higher than conventional AES or DES algorithms. If in near future, a grid of supercomputers can compare a trillion trillion trillion (1036) combinations of one ECG segment (comprising 500 ECG samples) per second for ECG morphology matching, it will take approximately 9.333 X 10970 years to enumerate all the combinations. After receiving the compressed ECG packets the doctor's mobile phone or the hospital server authenticates the patient using our proposed set of ECG biometric based authentication mechanisms. Once authenticated, the patients are diagnosed with our faster ECG diagnosis algorithms. In a nutshell, this thesis contains a set of algorithms that can save a CVD affected patient's life by harnessing the power of mobile computation and wireless communication

    Heartbeats Do Not Make Good Pseudo-Random Number Generators: An Analysis of the Randomness of Inter-Pulse Intervals

    Get PDF
    The proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these systems and the environment in which they operate. One area that has received much attention lately is the use of (human) biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. The heart signal (e.g., as recorded in an electrocardiogram) has been used by several researchers in the last few years. Specifically, the so-called Inter-Pulse Intervals (IPIs), which is the time between two consecutive heartbeats, have been repeatedly pointed out as a potentially good source of entropy and are at the core of various recent authentication protocols. In this work, we report the results of a large-scale statistical study to determine whether such an assumption is (or not) upheld. For this, we have analyzed 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from 1353 subjects sampled at different frequencies and with lengths that vary between a few minutes and several hours. We believe this is the largest dataset on this topic analyzed in the literature. We have then applied a standard battery of randomness tests to the extracted IPIs. Under the algorithms described in this paper and after analyzing these 19 public ECG datasets, our results raise doubts about the use of IPI values as a good source of randomness for cryptographic purposes. This has repercussions both in the security of some of the protocols proposed up to now and also in the design of future IPI-based schemes.This work was supported by the MINECO Grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You); by the CAMGrant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data and Risks); and by the MINECO Grant TIN2016-79095-C2-2-R (SMOG-DEV: Security Mechanisms for fog computing: advanced security for Devices). This research has been supported by the Swedish Research Council (Vetenskapsrådet) under Grant No. 2015-04154 (PolUser: Rich User-Controlled Privacy Policies)

    LVAD Occlusion Condition Monitoring Using State Augmented Acoustic Spectral Images

    Get PDF
    Each year, thousands of people die from heart disease and related illnesses due to the lack of available donor organs. Left ventricular assist devices (LVADs) aim to mitigate that occurrence, serving as a bridge-to-surgery option. While short term survival rates of LVAD patients near that of orthotopic surgery they are not viable long term options due to varied reasons. This work examines one cause, outlet graft thrombosis, and develops an algorithm for increasingly robust classification of device condition as it pertains to thrombosis or more generally occlusion. In order to do so an in vitro heart simulator is developed so that varying degrees of signal non-stationarity can be simulated and tested over a wide range of physiological blood pressure and heart rate conditions. Using a seeded-fault methodology, acoustics are acquired at the LVAD outlet graft location and subsequent spectral images of the sounds are developed. Statistical parameters from the images are used as features for classification using a support vector machine (SVM) which yields promising results. Given a comprehensive training space classification can be performed to fair accuracies (roughly 80%) using only the spectral image parameters. However, when the training space is limited augmenting the image features with patient state parameters elicits more robust identification. The algorithm developed in this work offers non-invasive diagnostic potential for LVAD conditions otherwise requiring invasive means

    Detection of abnormalities in ECG using Deep Learning

    Get PDF
    A significant part of healthcare is focused on the information that the physiological signals offer about the health state of an individual. The Electrocardiogram (ECG) cyclic behaviour gives insight on a subject’s emotional, behavioral and cardiovascular state. These signals often present abnormal events that affects their analysis. Two examples are the noise, that occurs during the acquisition, and symptomatic patterns, that are produced by pathologies. This thesis proposes a Deep Neural Networks framework that learns the normal behaviour of an ECG while detecting abnormal events, tested in two different settings: detection of different types of noise, and; symptomatic events caused by different pathologies. Two algorithms were developed for noise detection, using an autoencoder and Convolutional Neural Networks (CNN), reaching accuracies of 98,18% for the binary class model and 70,74% for the multi-class model, which is able to discern between base wandering, muscle artifact and electrode motion noise. As for the arrhythmia detection algorithm was developed using an autoencoder and Recurrent Neural Networks with Gated Recurrent Units (GRU) architecture. With an accuracy of 56,85% and an average sensitivity of 61.13%, compared to an average sensitivity of 75.22% for a 12 class model developed by Hannun et al. The model detects 7 classes: normal sinus rhythm, paced rhythm, ventricular bigeminy, sinus bradycardia, atrial fibrillation, atrial flutter and pre-excitation. It was concluded that the process of learning the machine learned features of the normal ECG signal, currently sacrifices the accuracy for higher generalization. It performs better at discriminating the presence of abnormal events in ECG than classifying different types of events. In the future, these algorithms could represent a huge contribution in signal acquisition for wearables and the study of pathologies visible in not only in ECG, but also EMG and respiratory signals, especially applied to active learning
    corecore