1,597 research outputs found

    Intuitive, But Not Simple: Including Explicit Water Molecules in Protein-Protein Docking Simulations Improves Model Quality

    Get PDF
    Characterizing the nature of interaction between proteins that have not been experimentally co-crystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high-resolution crystallographically characterized “dry” protein-protein complexes, and was shown to reliably identify native-like models. However, most current protein-protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the ‘truly’ bridging waters at the 30 protein-protein interfaces and we utilized them in “solvated” docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ~24% in the average hit-count within the top-10 predictions the protein-protein dataset was seen, compared to standard “dry” docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native-like structure predictions

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    Software for molecular docking: a review

    Get PDF
    Publshed ArticleMolecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homologymodeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate

    Improving protein docking with binding site prediction

    Get PDF
    Protein-protein and protein-ligand interactions are fundamental as many proteins mediate their biological function through these interactions. Many important applications follow directly from the identification of residues in the interfaces between protein-protein and protein-ligand interactions, such as drug design, protein mimetic engineering, elucidation of molecular pathways, and understanding of disease mechanisms. The identification of interface residues can also guide the docking process to build the structural model of protein-protein complexes. This dissertation focuses on developing computational approaches for protein-ligand and protein-protein binding site prediction and applying these predictions to improve protein-protein docking. First, we develop an automated approach LIGSITEcs to predict protein-ligand binding site, based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcs performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Second, for protein-protein binding site, we develop metaPPI, a meta server for interface prediction. MetaPPI combines results from a number of tools, such as PPI_Pred, PPISP, PINUP, Promate, and SPPIDER, which predict enzyme-inhibitor interfaces with success rates of 23% to 55% and other interfaces with 10% to 28% on a benchmark dataset of 62 complexes. After refinement, metaPPI significantly improves prediction success rates to 70% for enzyme-inhibitor and 44% for other interfaces. Third, for protein-protein docking, we develop a FFT-based docking algorithm and system BDOCK, which includes specific scoring functions for specific types of complexes. BDOCK uses family-based residue interface propensities as a scoring function and obtains improvement factors of 4-30 for enzyme-inhibitor and 4-11 for antibody-antigen complexes in two specific SCOP families. Furthermore, the degrees of buriedness of surface residues are integrated into BDOCK, which improves the shape discriminator for enzyme-inhibitor complexes. The predicted interfaces from metaPPI are integrated as well, either during docking or after docking. The evaluation results show that reliable interface predictions improve the discrimination between near-native solutions and false positive. Finally, we propose an implicit method to deal with the flexibility of proteins by softening the surface, to improve docking for non enzyme-inhibitor complexes

    Protein structure and dynamics

    Get PDF
    Proteins are essential components of biological processes, this explains why understanding their structure, function and dynamics is so important. In the following, we give an overview on various methods for the determination of three-dimensional structure and dynamics of proteins. We discuss the most important experimental methods, X-ray diffraction and NMR spectroscopy, as well as computer modelling techniques and their application to the construction of graphics models, which can be inspected visually. We also treat prediction as well as molecular graphics representation of protein structures. We devote special attention to dynamics, where time scales of protein movement, structures and interactions are discussed. We wish to demonstrate that protein structure determination and computer representation is now at a very high degree of sophistication and reliability

    Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors

    Get PDF
    COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike-ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently "reaction-prone." The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic "hydrophobic ↔ polar" mutations serve as a potential breakthrough

    Improving protein docking with binding site prediction

    Get PDF
    Protein-protein and protein-ligand interactions are fundamental as many proteins mediate their biological function through these interactions. Many important applications follow directly from the identification of residues in the interfaces between protein-protein and protein-ligand interactions, such as drug design, protein mimetic engineering, elucidation of molecular pathways, and understanding of disease mechanisms. The identification of interface residues can also guide the docking process to build the structural model of protein-protein complexes. This dissertation focuses on developing computational approaches for protein-ligand and protein-protein binding site prediction and applying these predictions to improve protein-protein docking. First, we develop an automated approach LIGSITEcs to predict protein-ligand binding site, based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcs performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Second, for protein-protein binding site, we develop metaPPI, a meta server for interface prediction. MetaPPI combines results from a number of tools, such as PPI_Pred, PPISP, PINUP, Promate, and SPPIDER, which predict enzyme-inhibitor interfaces with success rates of 23% to 55% and other interfaces with 10% to 28% on a benchmark dataset of 62 complexes. After refinement, metaPPI significantly improves prediction success rates to 70% for enzyme-inhibitor and 44% for other interfaces. Third, for protein-protein docking, we develop a FFT-based docking algorithm and system BDOCK, which includes specific scoring functions for specific types of complexes. BDOCK uses family-based residue interface propensities as a scoring function and obtains improvement factors of 4-30 for enzyme-inhibitor and 4-11 for antibody-antigen complexes in two specific SCOP families. Furthermore, the degrees of buriedness of surface residues are integrated into BDOCK, which improves the shape discriminator for enzyme-inhibitor complexes. The predicted interfaces from metaPPI are integrated as well, either during docking or after docking. The evaluation results show that reliable interface predictions improve the discrimination between near-native solutions and false positive. Finally, we propose an implicit method to deal with the flexibility of proteins by softening the surface, to improve docking for non enzyme-inhibitor complexes

    A novel strategy for molecular interfaces optimization: the case of ferritin-transferrin receptor interaction

    Get PDF
    Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces
    • 

    corecore