7 research outputs found

    DPPIN: A Biological Dataset of Dynamic Protein-Protein Interaction Networks

    Full text link
    Nowadays, many network representation learning algorithms and downstream network mining tasks have already paid attention to dynamic networks or temporal networks, which are more suitable for real-world complex scenarios by modeling evolving patterns and temporal dependencies between node interactions. Moreover, representing and mining temporal networks have a wide range of applications, such as fraud detection, social network analysis, and drug discovery. To contribute to the network representation learning and network mining research community, in this paper, we generate a new biological dataset of dynamic protein-protein interaction networks (i.e., DPPIN), which consists of twelve dynamic protein-level interaction networks of yeast cells at different scales. We first introduce the generation process of DPPIN. To demonstrate the value of our published dataset DPPIN, we then list the potential applications that would be benefited. Furthermore, we design dynamic local clustering, dynamic spectral clustering, dynamic subgraph matching, dynamic node classification, and dynamic graph classification experiments, where DPPIN indicates future research opportunities for some tasks by presenting challenges on state-of-the-art baseline algorithms. Finally, we identify future directions for improving this dataset utility and welcome inputs from the community. All resources of this work are deployed and publicly available at https://github.com/DongqiFu/DPPIN

    Detecting Conserved Protein Complexes Using a Dividing-and-Matching Algorithm and Unequally Lenient Criteria for Network Comparison

    Get PDF
    The increase of protein–protein interaction (PPI) data of different species makes it possible to identify common subnetworks (conserved protein complexes) across species via local alignment of their PPI networks, which benefits us to study biological evolution. Local alignment algorithms compare PPI network of different species at both protein sequence and network structure levels. For computational and biological reasons, it is hard to find common subnetworks with strict similar topology from two input PPI networks. Consequently some methods introduce less strict criteria for topological similarity. However those methods fail to consider the differences of the two input networks and adopt equally lenient criteria on them. In this work, a new dividing-and-matching-based method, namely UEDAMAlign is proposed to detect conserved protein complexes. This method firstly uses known protein complexes or computational methods to divide one of the two input PPI networks into subnetworks and then maps the proteins in these subnetworks to the other PPI network to get their homologous proteins. After that, UEDAMAlign conducts unequally lenient criteria on the two input networks to find common connected components from the proteins in the subnetworks and their homologous proteins in the other network. We carry out network alignments between S. cerevisiae and D. melanogaster, H. sapiens and D. melanogaster, respectively. Comparisons are made between other six existing methods and UEDAMAlign. The experimental results show that UEDAMAlign outperforms other existing methods in recovering conserved protein complexes that both match well with known protein complexes and have similar functions

    A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

    Get PDF
    Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed to identify a new method for more accurate identification of complexes. Method: In this study, Yeast and Human PPINs were investigated. The Yeast datasets, called DIP, MIPS, and Krogan, contain 4930 nodes and 17201 interactions, 4564 nodes and 15175 interactions, and 2675 nodes and 7084 interactions, respectively. The Human dataset contains 37437 interactions. The proposed and well-known methods have been implemented on datasets to identify protein complexes. Predicted complexes were compared with the CYC2008 and CORUM benchmark datasets. The evaluation criteria showed that the proposed method predicts PPINs with higher efficiency. Results: In this study, a new method of the core-attachment methods was used to detect protein complexes enjoying high efficiency in the detection. The more precise the detection method is, the more correct we can identify the proteins involved in biological process. According to the evaluation criteria, the proposed method showed a significant improvement in the detection method compared to the other methods. Conclusion: According to the results, the proposed method can identify a sufficient number of protein complexes, among the highest biological significance in functional cooperation with proteins

    Prediction of disease genes using tissue-specified gene-gene network

    Get PDF

    Algorithms and Software for the Analysis of Large Complex Networks

    Get PDF
    The work presented intersects three main areas, namely graph algorithmics, network science and applied software engineering. Each computational method discussed relates to one of the main tasks of data analysis: to extract structural features from network data, such as methods for community detection; or to transform network data, such as methods to sparsify a network and reduce its size while keeping essential properties; or to realistically model networks through generative models
    corecore