3,907 research outputs found

    Process: program for research on operator control in an experimental simulated setting

    Get PDF
    An experimental tool for the investigation of human control behavior of slowly responding dynamic systems is described. Process (Program for Research on Operator Control in an Experimental Simulated Setting) is a simulation of a dynamic water-alcohol distillation system that is especially useful in research on operator training. In particular, Process was developed to conduct research on fault management skill

    A Survey on Acoustic Side Channel Attacks on Keyboards

    Full text link
    Most electronic devices utilize mechanical keyboards to receive inputs, including sensitive information such as authentication credentials, personal and private data, emails, plans, etc. However, these systems are susceptible to acoustic side-channel attacks. Researchers have successfully developed methods that can extract typed keystrokes from ambient noise. As the prevalence of keyboard-based input systems continues to expand across various computing platforms, and with the improvement of microphone technology, the potential vulnerability to acoustic side-channel attacks also increases. This survey paper thoroughly reviews existing research, explaining why such attacks are feasible, the applicable threat models, and the methodologies employed to launch and enhance these attacks.Comment: 22 pages, conferenc

    Computer assisted audiometric evaluation system

    Get PDF
    A computer-based audiometric evaluation system has been developed. The system makes use of an IBM PC/XT/AT compatible personal computer to perform pure tone and speech tests and · comprises a plug-in card and custom software. The card contains pure tone and masking noise generators, together with amplifiers for a. set of headphones .and bone conduction transducer, patient and audiologist microphone amplifiers and a hand-held infra-red remote-control unit. A voice-operated gain-adjusting device on the audiologist's microphone eliminates the need for a sound pressure level meter during speech tests. The software-based user-interface makes use.of overlaid pop-up menus, context sensitive assistance.and a text editor on a graphics screen. Pure tone and speech data are acquired and displayed on a dynamic audiogram and speech discrimination gram respectively. This data may be stored and later retrieved from a patient data base. Further audiometric tests may be incorporated at a later stage

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    When keystroke meets password: Attacks and defenses

    Get PDF

    The Origins of Phantom Partials in the Piano

    Get PDF
    Phantom partials are anomalous frequency components identifiable in the sound of the piano and occur at the sum and difference frequencies of two overtones. For several decades they have been identified as crucial components to the sound of the piano and assumed to be generated by the forced longitudinal motion of the string. Recent work has identified that contrary to common belief, most of the power is produced in the non-string components with the most likely source being the wooden structural components. This work presents experimental results for two plausible theories that could explain the origins of phantom partials in the wooden components. Experimentation indicated that a contact nonlinearity is more likely than a pressure induced nonlinearity. A model describing a wooden contact nonlinearity is also presented and indicates that the theory of phantom partial generation resulting from wood-on-wood contact in the piano is plausible

    Beyond key velocity: Continuous sensing for expressive control on the Hammond Organ and Digital keyboards

    Get PDF
    In this thesis we seek to explore the potential for continuous key position to be used as an expressive control in keyboard musical instruments, and how preexisting skills can be adapted to leverage this additional control. Interaction between performer and sound generation on a keyboard instrument is often restricted to a number of discrete events on the keys themselves (notes onsets and offsets), while complementary continuous control is provided via additional interfaces, such as pedals, modulation wheels and knobs. The rich vocabulary of gestures that skilled performers can achieve on the keyboard is therefore often simplified to a single, discrete velocity measurement. A limited number of acoustical and electromechanical keyboard instruments do, however, present affordances of continuous key control, so that the role of the key is not limited to delivering discrete events, but its instantaneous position is, to a certain extent, an element of expressive control. Recent evolutions in sensing technologies allow to leverage continuous key position as an expressive element in the sound generation of digital keyboard musical instruments. We start by exploring the expression available on the keys of the Hammond organ, where nine contacts are closed at different points of the key throw for each key onset and we find that the velocity and the percussiveness of the touch affect the way the contacts close and bounce, producing audible differences in the onset transient of each note. We develop an embedded hardware and software environment for low-latency sound generation controlled by continuous key position, which we use to create two digital keyboard instruments. The first of these emulates the sound of a Hammond and can be controlled with continuous key position, so that it allows for arbitrary mapping between the key position and the nine virtual contacts of the digital sound generator. A study with 10 musicians shows that, when exploring the instrument on their own, the players can appreciate the differences between different settings and tend to develop a personal preference for one of them. In the second instrument, continuous key position is the fundamental means of expression: percussiveness, key position and multi-key gestures control the parameters of a physical model of a flute. In a study with 6 professional musicians playing this instrument we gather insights on the adaptation process, the limitations of the interface and the transferability of traditional keyboard playing techniques
    corecore