1,540 research outputs found

    Human-Centered Automation for Resilience in Acquiring Construction Field Information

    Get PDF
    abstract: Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events. In the field, construction information acquisition often involves three types of activities including sensor-based inspection, manual inspection, and communication. Human interventions play critical roles in these three types of field information acquisition activities. A resilient information acquisition system is needed for safer and more productive construction. The use of various automation technologies could help improve human performance by proactively providing the needed knowledge of using equipment, improve the situation awareness in multi-person collaborations, and reduce the mental workload of operators and inspectors. Unfortunately, limited studies consider human factors in automation techniques for construction field information acquisition. Fully utilization of the automation techniques requires a systematical synthesis of the interactions between human, tasks, and construction workspace to reduce the complexity of information acquisition tasks so that human can finish these tasks with reliability. Overall, such a synthesis of human factors in field data collection and analysis is paving the path towards “Human-Centered Automation” (HCA) in construction management. HCA could form a computational framework that supports resilient field data collection considering human factors and unexpected events on dynamic job sites. This dissertation presented an HCA framework for resilient construction field information acquisition and results of examining three HCA approaches that support three use cases of construction field data collection and analysis. The first HCA approach is an automated data collection planning method that can assist 3D laser scan planning of construction inspectors to achieve comprehensive and efficient data collection. The second HCA approach is a Bayesian model-based approach that automatically aggregates the common sense of people from the internet to identify job site risks from a large number of job site pictures. The third HCA approach is an automatic communication protocol optimization approach that maximizes the team situation awareness of construction workers and leads to the early detection of workflow delays and critical path changes. Data collection and simulation experiments extensively validate these three HCA approaches.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Sparsity-Based Error Detection in DC Power Flow State Estimation

    Full text link
    This paper presents a new approach for identifying the measurement error in the DC power flow state estimation problem. The proposed algorithm exploits the singularity of the impedance matrix and the sparsity of the error vector by posing the DC power flow problem as a sparse vector recovery problem that leverages the structure of the power system and uses l1l_1-norm minimization for state estimation. This approach can provably compute the measurement errors exactly, and its performance is robust to the arbitrary magnitudes of the measurement errors. Hence, the proposed approach can detect the noisy elements if the measurements are contaminated with additive white Gaussian noise plus sparse noise with large magnitude. The effectiveness of the proposed sparsity-based decomposition-DC power flow approach is demonstrated on the IEEE 118-bus and 300-bus test systems

    Impact Assessment, Detection, And Mitigation Of False Data Attacks In Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations

    Impact Assessment, Detection, and Mitigation of False Data Attacks in Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations
    • …
    corecore